Publications by authors named "Alice M Clement"

Well-preserved specimens of a new species of arthrodiran placoderm, sp. nov. (Middle Devonian of Victoria, Australia), reveals previously unknown information on the dermal skeleton, body-shape and dentition of the wide-spread genus .

View Article and Find Full Text PDF

The living coelacanth Latimeria (Sarcopterygii: Actinistia) is an iconic, so-called 'living fossil' within one of the most apparently morphologically conservative vertebrate groups. We describe a new, 3-D preserved coelacanth from the Late Devonian Gogo Formation in Western Australia. We assemble a comprehensive analysis of the group to assess the phylogeny, evolutionary rates, and morphological disparity of all coelacanths.

View Article and Find Full Text PDF

Jensen . () question evidence presented of a chambered heart within placoderms, citing its small size and apparently ventral atrium. However, they fail to note the belly-up orientation of the placoderm within one nodule, and the variability of heart morphology within extant taxa.

View Article and Find Full Text PDF

The origin and early diversification of jawed vertebrates involved major changes to skeletal and soft anatomy. Skeletal transformations can be examined directly by studying fossil stem gnathostomes; however, preservation of soft anatomy is rare. We describe the only known example of a three-dimensionally mineralized heart, thick-walled stomach, and bilobed liver from arthrodire placoderms, stem gnathostomes from the Late Devonian Gogo Formation in Western Australia.

View Article and Find Full Text PDF

The lobe-finned fish, lungfish (Dipnoi, Sarcoptergii), have persisted for ~400 million years from the Devonian Period to present day. The evolution of their dermal skull and dentition is relatively well understood, but this is not the case for the central nervous system. While the brain has poor preservation potential and is not currently known in any fossil lungfish, substantial indirect information about it and associated structures (e.

View Article and Find Full Text PDF

Background: The megalichthyids are one of several clades of extinct tetrapodomorph fish that lived throughout the Devonian-Permian periods. They are advanced "osteolepidid-grade" fishes that lived in freshwater swamp and lake environments, with some taxa growing to very large sizes. They bear cosmine-covered bones and a large premaxillary tusk that lies lingually to a row of small teeth.

View Article and Find Full Text PDF

The production of blood cells (haematopoiesis) occurs in the limb bones of most tetrapods but is absent in the fin bones of ray-finned fish. When did long bones start producing blood cells? Recent hypotheses suggested that haematopoiesis migrated into long bones prior to the water-to-land transition and protected newly-produced blood cells from harsher environmental conditions. However, little fossil evidence to support these hypotheses has been provided so far.

View Article and Find Full Text PDF

The transition from water to land by the earliest tetrapods in the Devonian Period is seen as one of the greatest steps in evolution. However, little is understood concerning changes in brain morphology over this transition. Here, we determine the brain-braincase relationship in fishes and basal lissamphibians as a proxy to elucidate the changes that occurred over the fish-tetrapod transition.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

The evolution of fishes to tetrapods (four-limbed vertebrates) was one of the most important transformations in vertebrate evolution. Hypotheses of tetrapod origins rely heavily on the anatomy of a few tetrapod-like fish fossils from the Middle and Late Devonian period (393-359 million years ago). These taxa-known as elpistostegalians-include Panderichthys, Elpistostege and Tiktaalik, none of which has yet revealed the complete skeletal anatomy of the pectoral fin.

View Article and Find Full Text PDF

Background: Palaeognathae is a basal clade within Aves and include the large and flightless ratites and the smaller, volant tinamous. Although much research has been conducted on various aspects of palaeognath morphology, ecology, and evolutionary history, there are still areas which require investigation. This study aimed to fill gaps in our knowledge of the Southern Cassowary, Casuarius casuarius, for which information on the skeletal systems of the syrinx, hyoid and larynx is lacking - despite these structures having been recognised as performing key functional roles associated with vocalisation, respiration and feeding.

View Article and Find Full Text PDF

New fossil lungfish remains comprising two parasphenoids, tooth plates and scales from the Famennian Witpoort Formation of South Africa are described. From the parasphenoid material, which bears similarity to and but is nevertheless unique, a new genus, gen. et sp.

View Article and Find Full Text PDF

The skull of '' from the Early Devonian of Australia (AM-F101607) has significantly expanded our knowledge of early osteichthyan anatomy, but its phylogenetic position has remained uncertain. We herein describe a second skull of '' and present micro-CT data on both specimens to reveal novel anatomical features, including cranial endocasts. Several features previously considered to link ' with actinopterygians are now considered generalized osteichthyan characters or of uncertain polarity.

View Article and Find Full Text PDF

Lungfishes are the extant sister group of tetrapods. As such, they are important for the study of evolutionary processes involved in the water to land transition of vertebrates. The evolution of a true neck, that is, the complete separation of the pectoral girdle from the cranium, is one of the most intriguing morphological transitions known among vertebrates.

View Article and Find Full Text PDF

The first virtual cranial endocast of a lungfish from the Early Devonian, , is described. only the fourth Devonian lungfish for which a near complete cranial endocast is known, is a key taxon for clarifying primitive character states within the group. A ventrally-expanded telencephalic cavity is present in the endocast of demonstrating that this is the primitive state for "true" Dipnoi.

View Article and Find Full Text PDF

Lungfish first appeared in the geological record over 410 million years ago and are the closest living group of fish to the tetrapods. Palaeoneurological investigations into the group show that unlike numerous other fishes-but more similar to those in tetrapods-lungfish appear to have had a close fit between the brain and the cranial cavity that housed it. As such, researchers can use the endocast of fossil taxa (an internal cast of the cranial cavity) both as a source of morphological data but also to aid in developing functional and phylogenetic implications about the group.

View Article and Find Full Text PDF

Although the brains of the three extant lungfish genera have been previously described, the spatial relationship between the brain and the neurocranium has never before been fully described nor quantified. Through the application of virtual microtomography (μCT) and 3D rendering software, we describe aspects of the gross anatomy of the brain and labyrinth region in the Australian lungfish, Neoceratodus forsteri and compare this to previous accounts. Unexpected characters in this specimen include short olfactory peduncles connecting the olfactory bulbs to the telencephalon, and an oblong telencephalon.

View Article and Find Full Text PDF

Lungfish, or dipnoans, have a history spanning over 400 million years and are the closest living sister taxon to the tetrapods. Most Devonian lungfish had heavily ossified endoskeletons, whereas most Mesozoic and Cenozoic lungfish had largely cartilaginous endoskeletons and are usually known only from isolated tooth plates or disarticulated bone fragments. There is thus a substantial temporal and evolutionary gap in our understanding of lungfish endoskeletal morphology, between the diverse and highly variable Devonian forms on the one hand and the three extant genera on the other.

View Article and Find Full Text PDF

Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.

View Article and Find Full Text PDF