Protein histidine phosphorylation has largely remained unexplored due to the challenges of analyzing relatively unstable phosphohistidine-containing proteins. We describe a procedure for determining the stoichiometry of histidine phosphorylation on the human histidine kinases NME1 and NME2 by intact mass spectrometry under conditions that retain this acid-labile protein modification. By characterizing these two model histidine protein kinases in the absence and presence of a suitable phosphate donor, the stoichiometry of histidine phosphorylation can be determined.
View Article and Find Full Text PDFDespite the discovery of protein histidine (His) phosphorylation nearly six decades ago, difficulties in measuring and quantifying this unstable post-translational modification (PTM) have limited its mechanistic analysis in prokaryotic and eukaryotic signaling. Here, we describe reliable procedures for affinity purification, cofactor-binding analysis and antibody-based detection of phosphohistidine (pHis), on the putative human His kinases NME1 (NDPK-A) and NME2 (NDPK-B) and the glycolytic phosphoglycerate mutase PGAM1. By exploiting isomer-specific monoclonal N1-pHis and N3-pHis antibodies, we describe robust protocols for immunological detection and isomer discrimination of site-specific pHis, including N3-pHis on His 11 of PGAM1.
View Article and Find Full Text PDF