Magnetars are neutron stars with extremely high magnetic fields (≳10 gauss) that exhibit various X-ray phenomena such as sporadic subsecond bursts, long-term persistent flux enhancements and variable rotation-period derivative. In 2020, a fast radio burst (FRB), akin to cosmological millisecond-duration radio bursts, was detected from the Galactic magnetar SGR 1935+2154 (refs. ), confirming the long-suspected association between some FRBs and magnetars.
View Article and Find Full Text PDFGiant radio pulses (GRPs) are sporadic bursts emitted by some pulsars that last a few microseconds and are hundreds to thousands of times brighter than regular pulses from these sources. The only GRP-associated emission outside of radio wavelengths is from the Crab Pulsar, where optical emission is enhanced by a few percentage points during GRPs. We observed the Crab Pulsar simultaneously at x-ray and radio wavelengths, finding enhancement of the x-ray emission by 3.
View Article and Find Full Text PDFPulsed emission from the Vela pulsar at energies above 3 TeV has recently been detected by the H.E.S.
View Article and Find Full Text PDFMultiwavelength followup of unidentified sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting.
View Article and Find Full Text PDFMillisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data.
View Article and Find Full Text PDF