is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens.
View Article and Find Full Text PDFMacrophages can reversibly polarize into multiple functional subsets depending on their micro-environment. Identification and understanding the functionality of these subsets is relevant for the study of immune‑related diseases. However, knowledge about canine macrophage polarization is still in its infancy.
View Article and Find Full Text PDFUnlabelled: In the last decades, antibody-based tumor therapy has fundamentally improved the efficacy of treatment for patients with cancer. Currently, almost all tumor antigen-targeting antibodies approved for clinical application are of IgG1 Fc isotype. Similarly, the mouse homolog mIgG2a is the most commonly used in tumor mouse models.
View Article and Find Full Text PDFT cell engager (TCE) antibodies have emerged as promising cancer therapeutics that link cytotoxic T-cells to tumor cells by simultaneously binding to CD3E on T-cells and to a tumor-associated antigen (TAA) expressed by tumor cells. We previously reported a novel bispecific format, the IgG-like Fab x sdAb-Fc (also known as half-IG_VH-h-CH2-CH3), combining a conventional antigen-binding fragment (Fab) with a single domain antibody (sdAb). Here, we evaluated this Fab x sdAb-Fc format as a T-cell redirecting bispecific antibody (TbsAbs) by targeting mEGFR on tumor cells and mCD3E on T cells.
View Article and Find Full Text PDFProteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome' functions, they seem specially adapted for a role in MHC class I antigen processing and CD8 T-cell activation.
View Article and Find Full Text PDFTumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models.
View Article and Find Full Text PDFJ Extracell Vesicles
March 2021
Maternal milk is nature's first functional food. It plays a crucial role in the development of the infant's gastrointestinal (GI) tract and the immune system. Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer enclosed vesicles released by cells for intercellular communication and are a component of milk.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2020
Purpose: Bispecific antibodies (BsAbs) have emerged as a leading drug class for cancer therapy and are becoming increasingly of interest for therapeutic applications. As of April 2020, over 123 BsAbs are under clinical evaluation for use in oncology (including the two marketed BsAbs Blinatumomab and Catumaxomab). The majority (82 of 123) of BsAbs under clinical evaluation can be categorized as bispecific immune cell engager whereas a second less well-discussed subclass of BsAbs targets two tumor-associated antigens (TAAs).
View Article and Find Full Text PDFThe pathogenesis of many inflammatory diseases is associated with the uncontrolled activation of nuclear factor kappa B (NF-κB) in macrophages. Previous studies have shown that in various cell types, heat shock protein 70 (Hsp70) plays a crucial role in controlling NF-κB activity. So far, little is known about the role of Hsp70 in canine inflammatory processes.
View Article and Find Full Text PDFDue to the technical innovations in generating bispecific antibodies (BsAbs) in recent years, BsAbs have become important reagents for diagnostic and therapeutic applications. However, the difficulty of producing a heterodimer consisting of two different arms with high yield and purity constituted a major limitation for their application in academic and clinical settings. Here, we describe a novel Fc-containing BsAb format (Fab × sdAb-Fc) composed of a conventional antigen-binding fragment (Fab), and a single domain antibody (sdAb), which avoids heavy-light chain mis-pairing during antibody assembly.
View Article and Find Full Text PDFDysregulation of retinal pigment epithelium (RPE) cells is the main cause of a variety of ocular diseases. Potentially heat shock proteins, by preventing molecular and cellular damage and modulating inflammatory disease, may exert a protective role in eye disease. In particular, the inducible form of heat shock protein 70 (Hsp70) is widely upregulated in inflamed tissues, and in vivo upregulation of Hsp70 expression by HSP co-inducing compounds has been shown to be a potential therapeutic strategy for inflammatory diseases.
View Article and Find Full Text PDFTherapeutics based on small interfering RNA (siRNA) have promising potential as antiviral and anti-inflammatory agents. To deliver siRNA across cell membranes to reach the RNAi pathway in the cytosol of target cells, non-viral nanoparticulate delivery approaches are explored. Recently, we showed that encapsulation of siRNA in lipid-polymer hybrid nanoparticles (LPNs), based on poly(DL-lactic-co-glycolic acid) (PLGA) and cationic lipid-like materials (lipidoids), remarkably enhances intracellular delivery of siRNA as compared to siRNA delivery with LPNs modified with dioleoyltrimethylammoniumpropane (DOTAP) as the lipid component.
View Article and Find Full Text PDFThe skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin's physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination.
View Article and Find Full Text PDFTuberculosis (TB), caused by (), remains a global threat. The only approved vaccine against TB, bacillus Calmette-Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8 T cell responses .
View Article and Find Full Text PDFThe skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8 T cell activation following dermal DNA tattoo immunization, exploiting a model antigen that contains an immunoproteasome-dependent epitope.
View Article and Find Full Text PDFThe skin is an attractive organ for immunization due to the presence of a large number of epidermal and dermal antigen-presenting cells. Hollow microneedles allow for precise and non-invasive intradermal delivery of vaccines. In this study, ovalbumin (OVA)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles with and without TLR3 agonist poly(I:C) were prepared and administered intradermally by hollow microneedles.
View Article and Find Full Text PDFProteasome-catalyzed peptide splicing (PCPS) generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8 T cells in L.
View Article and Find Full Text PDFMost vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA vaccine H56, encoding three secreted Mycobacterium tuberculosis antigens, was used to test a complete strategy to enhance vaccine' immunogenicity.
View Article and Find Full Text PDFCD8(+) T cells responding to infection recognize pathogen-derived epitopes presented by MHC class-I molecules. While most of such epitopes are generated by proteasome-mediated antigen cleavage, analysis of tumor antigen processing has revealed that epitopes may also derive from proteasome-catalyzed peptide splicing (PCPS). To determine whether PCPS contributes to epitope processing during infection, we analyzed the fragments produced by purified proteasomes from a Listeria monocytogenes polypeptide.
View Article and Find Full Text PDFCationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA).
View Article and Find Full Text PDFUVB irradiation (290-320 nm) is used to treat skin diseases like psoriasis and atopic dermatitis, and is known to suppress contact hypersensitivity (CHS) reactions in mouse models. Regulatory T cells (Treg cells) have been shown to be responsible for this UVB-induced suppression of CHS. The epidermal growth factor (EGF)-like growth factor amphiregulin (AREG) engages EGFR on Treg cells and, in different disease models, it was shown that mast cell-derived AREG is essential for optimal Treg cell function in vivo.
View Article and Find Full Text PDFStable Foxp3 expression is required for the development of functional regulatory T (Treg) cells. Here, we demonstrate that the expression of the transcription factor Foxp3 can be regulated through the polyubiquitination of multiple lysine residues, resulting in proteasome-mediated degradation. Expression of the deubiquitinase (DUB) USP7 was found to be upregulated and active in Treg cells, being associated with Foxp3 in the nucleus.
View Article and Find Full Text PDFFoxp3 is crucial for both the development and function of regulatory T (Treg) cells; however, the posttranslational mechanisms regulating Foxp3 transcriptional output remain poorly defined. Here, we demonstrate that T cell factor 1 (TCF1) and Foxp3 associates in Treg cells and that active Wnt signaling disrupts Foxp3 transcriptional activity. A global chromatin immunoprecipitation sequencing comparison in Treg cells revealed considerable overlap between Foxp3 and Wnt target genes.
View Article and Find Full Text PDF