Publications by authors named "Alice H Huang"

Tendons are connective tissues with limited healing potential which results in permanently impaired function. Although direct mechanical testing of tendon remains the gold standard for functional analyses, this assay is terminal and tracking healing over time requires the use of many animals. An alternative method for quantifying tendon function is gait analysis, which is non-terminal and enables longitudinal tracking of the same animal.

View Article and Find Full Text PDF

Intervertebral disc (IVD) defects heal poorly and can cause back pain and disability. We identified that IVD herniation injury heals regeneratively in neonatal mice until postnatal day 14 (p14) and shifts to fibrotic healing by p28. This age coincides with the shift in expansive IVD growth from cell proliferation to matrix elaboration, implicating collagen crosslinking.

View Article and Find Full Text PDF

This review highlights the promise of fiber-reinforced hydrogel composites (FRHCs) for augmenting tendon and ligament repair and regeneration. Composed of reinforcing fibers embedded in a hydrogel, these scaffolds provide both mechanical strength and a conducive microenvironment for biological processes required for connective tissue regeneration. Typical properties of FRHCs are discussed, highlighting their ability to simultaneously fulfill essential mechanical and biological design criteria for a regenerative scaffold.

View Article and Find Full Text PDF

Effective tendon regeneration following injury is contingent on appropriate differentiation of recruited cells and deposition of mature, aligned, collagenous extracellular matrix that can withstand the extreme mechanical demands placed on the tissue. As such, myriad biomaterial approaches have been explored to provide biochemical and physical cues that encourage tenogenesis and template aligned matrix deposition in lieu of dysfunctional scar tissue formation. Fiber-reinforced hydrogels present an ideal biomaterial system toward this end given their transdermal injectability, tunable stiffness over a range amenable to tenogenic differentiation of progenitors, and capacity for modular inclusion of biochemical cues.

View Article and Find Full Text PDF

Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H).

View Article and Find Full Text PDF

The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate.

View Article and Find Full Text PDF

Synthetic hydrogels represent an exciting avenue in the field of regenerative biomaterials given their injectability, orthogonally tunable mechanical properties, and potential for modular inclusion of cellular cues. Separately, recent advances in soluble factor release technology have facilitated control over the soluble milieu in cell microenvironments via tunable microparticles. A composite hydrogel incorporating both of these components can robustly mediate tendon healing following a single injection.

View Article and Find Full Text PDF

It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues.

View Article and Find Full Text PDF

Background: High rates of structural failure are reported after rotator cuff repairs due to inability to recreate the native enthesis during healing. The development of biological augmentation methods that mitigate scar formation and regenerate the enthesis is still an unmet need. Since neonatal enthesis is capable of regeneration after injury, this study tested whether delivery of neonatal tendon progenitor cells (TPCs) into the adult injured environment can enhance functional and structural supraspinatus enthesis and tendon healing.

View Article and Find Full Text PDF

Rotator cuff (RC) tendon tears are common shoulder injuries that result in irreversible and persistent degeneration of the associated muscles, which is characterized by severe inflammation, atrophy, fibrosis, and fatty infiltration. Although RC muscle degeneration strongly dictates the overall clinical outcomes, strategies to stimulate RC muscle regeneration have largely been overlooked to date. In this review, we highlight the current understanding of the cellular processes that coordinate muscle regeneration, and the roles of muscle resident cells, including immune cells, fibroadipogenic progenitors, and muscle satellite cells in the pathophysiologic regulation of RC muscles following injury.

View Article and Find Full Text PDF

Tendon injuries are common and debilitating, with non-regenerative healing often resulting in chronic disease. While there has been considerable progress in identifying the cellular and molecular regulators of tendon healing, the role of inflammation in tendon healing is less well understood. While inflammation underlies chronic tendinopathy, it also aids debris clearance and signals tissue repair.

View Article and Find Full Text PDF

The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFβ and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail.

View Article and Find Full Text PDF

Tendons are dense connective tissues that transmit muscle forces to the skeleton. After adult injury, healing potential is generally poor and dominated by scar formation. Although the immune response is a key feature of healing, the specific immune cells and signals that drive tendon healing have not been fully defined.

View Article and Find Full Text PDF

Growth of the musculoskeletal system requires precise coordination between bone, muscle, and tendon during development. Insufficient elongation of the muscle-tendon unit relative to bone growth results in joint contracture, a condition characterized by reduction or complete loss of joint range of motion. Here we establish a novel murine model of joint contracture by targeting Smad4 for deletion in the tendon cell lineage using Scleraxis-Cre (ScxCre).

View Article and Find Full Text PDF

Tendon injuries are common with poor healing potential. The paucity of therapies for tendon injuries is due to our limited understanding of the cells and molecular pathways that drive tendon regeneration. Using a mouse model of neonatal tendon regeneration, we identified TGFβ signaling as a major molecular pathway that drives neonatal tendon regeneration.

View Article and Find Full Text PDF

Rotator cuff supraspinatus tendon injuries are common with high rates of anatomic failure after surgical repair. The purpose of the study was to define clinically relevant features of a mouse model of supraspinatus tendon injury to determine painful, functional, and structural outcomes; we further investigated two cell populations mediating healing using genetic lineage tracing after full detachment and repair of the supraspinatus tendon in mice. The pain was assessed using the mouse grimace scale and function by gait analysis and tensile testing.

View Article and Find Full Text PDF

Intervertebral disc (IVD) injuries are a cause of degenerative changes in adults which can lead to back pain, a leading cause of disability. We developed a model of neonatal IVD regeneration with full functional restoration and investigate the cellular dynamics underlying this unique healing response. We employed genetic lineage tracing in mice using () and () to fate-map annulus fibrosus (AF) and nucleus pulposus (NP) cells, respectively.

View Article and Find Full Text PDF

In this review, we highlight themes from a recent workshop focused on "Plasticity of Cell Fate in Musculoskeletal Tissues" held at the Orthopaedic Research Society's 2019 annual meeting. Experts in the field provided examples of mesenchymal cell plasticity during normal musculoskeletal development, regeneration, and disease. A thorough understanding of the biology underpinning mesenchymal cell plasticity may offer a roadmap for promoting regeneration while attenuating pathologic differentiation.

View Article and Find Full Text PDF

The transcription factor scleraxis () is required for tendon development; however, the function of is not fully understood. Although is expressed by all tendon progenitors and cells, only long tendons are disrupted in the mutant; short tendons appear normal and the ability of muscle to attach to skeleton is not affected. We recently demonstrated that long tendons are formed in two stages: first, by muscle anchoring to skeleton via a short tendon anlage; and second, by rapid elongation of the tendon in parallel with skeletal growth.

View Article and Find Full Text PDF

Despite considerable efforts to develop cellular, molecular, and structural repair strategies and restore intervertebral disk function after injury, the basic biology underlying intervertebral disk healing remains poorly understood. Remarkably, little is known about the origins of cell populations residing within the annulus fibrosus, or their phenotypes, heterogeneity, and roles during healing. This review focuses on recent literature highlighting the intrinsic and extrinsic cell types of the annulus fibrosus in the context of the injury and healing environment.

View Article and Find Full Text PDF

Tendon and ligament injuries are a leading cause of healthcare visits with significant impact in terms of economic cost and reduced quality of life. To date, reparative strategies remain largely restricted to conservative treatment or surgical repair. However, these therapies fail to restore native tendon structure and function; thus, the tissue may re-rupture or degenerate with time.

View Article and Find Full Text PDF

Rotator cuff supraspinatus tendon injuries are clinically challenging due to the high rates of failure after surgical repair. One key limitation to functional healing is the failure to regenerate the enthesis transition between tendon and bone, which heals by disorganized scar formation. Using two models of supraspinatus tendon injury in mouse (partial tear and full detachment/repair), the purpose of the study was to determine functional gait outcomes and identify the origin of the cells that mediate healing.

View Article and Find Full Text PDF

The rotator cuff is composed of several distinct muscles and tendons that function in concert to coordinate shoulder motion. Injuries to these tendons frequently result in permanent dysfunction and persistent pain. Despite considerable advances in operation techniques, surgical repair alone still does not fully restore rotator cuff function.

View Article and Find Full Text PDF

Tissue engineering is a promising approach for the repair of articular cartilage defects, with engineered constructs emerging that match native tissue properties. However, the inflammatory environment of the damaged joint might compromise outcomes, and this may be impacted by the choice of cell source in terms of their ability to operate anabolically in an inflamed environment. Here, we compared the response of engineered cartilage derived from native chondrocytes and mesenchymal stem cells (MSCs) to challenge by TNFα and IL-1β in order to determine if either cell type possessed an inherent advantage.

View Article and Find Full Text PDF