Publications by authors named "Alice H England"

The formation of like-charge guanidinium-guanidinium contact ion pairs in water is evidenced and characterized by X-ray absorption spectroscopy and first-principles spectral simulations based on molecular dynamics sampling. Observed concentration-induced nitrogen K-edge resonance shifts result from π* state mixing and the release of water molecules from each first solvation sphere as two solvated guanidinium ions associate into a stacked pair configuration. Possible biological implications of this counterintuitive cation-cation pairing are discussed.

View Article and Find Full Text PDF

Borohydride salts have been considered as good prospects for transportable hydrogen storage materials, with molecular hydrogen released via hydrolysis. We examine details of the hydration of sodium borohydride by the combination of X-ray absorption spectroscopy and first principles' theory. Compared to solid sodium borohydride, the aqueous sample exhibits an uncharacteristically narrow absorption feature that is shifted to lower energy, and ascribed to the formation of dihydrogen bonds between borohydride and water that weaken the boron-hydrogen covalent bonds.

View Article and Find Full Text PDF

Near edge x-ray absorption fine structure (NEXAFS) spectra at the boron K-edge were measured for aqueous boric acid, borate, and polyborate ions, using liquid microjet technology, and compared with simulated spectra calculated from first principles density functional theory in the excited electron and core hole (XCH) approximation. Thermal motion in both hydrated and isolated molecules was incorporated into the calculations by sampling trajectories from quantum mechanics∕molecular mechanics simulations at the experimental temperature. The boron oxide molecules exhibit little spectral change upon hydration, relative to mineral samples.

View Article and Find Full Text PDF

Near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen and carbon K-edges was used to study the hydration of adenosine triphosphate in liquid microjets. The total electron yield spectra were recorded as a function of concentration, pH, and the presence of sodium, magnesium, and copper ions (Na(+)/Mg(2+)/Cu(2+)). Significant spectral changes were observed upon protonation of the adenine ring, but not under conditions that promote π-stacking, such as high concentration or presence of Mg(2+), indicating that NEXAFS is insensitive to the phenomenon.

View Article and Find Full Text PDF

Nitrogen K-edge spectra of aqueous triglycine were measured using liquid microjets, and the effects of Hofmeister-active salts on the spectra were observed. Spectra simulated using density functional theory, sampled from room temperature classical molecular dynamics trajectories, capture all major features in the measured spectra. The spectrum of triglycine in water is quite similar to that in the presence of chaotropic sodium bromide (and other halides), which raises the solubility of proteins.

View Article and Find Full Text PDF

Near edge x-ray absorption fine structure spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified.

View Article and Find Full Text PDF