Publications by authors named "Alice Gutteridge"

The failure to develop effective therapies for pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) is in part due to their intrinsic heterogeneity. We aimed to quantitatively assess the extent to which this was present in these tumors through subclonal genomic analyses and to determine whether distinct tumor subpopulations may interact to promote tumorigenesis by generating subclonal patient-derived models in vitro and in vivo. Analysis of 142 sequenced tumors revealed multiple tumor subclones, spatially and temporally coexisting in a stable manner as observed by multiple sampling strategies.

View Article and Find Full Text PDF

Cell-free DNA is an accessible source of genetic material found naturally in plasma that could be used in many diagnostic applications. Translation of cfDNA analysis methods from research laboratories into the clinic would benefit from controls for monitoring the efficiency of patient sample purification and for quality control of the whole workflow from extraction through to analysis. Here we describe two types of control materials that can be "spiked" into plasma samples to monitor and evaluate different aspects of the workflow.

View Article and Find Full Text PDF

Glioneuronal tumours are an important cause of treatment-resistant epilepsy. Subtypes of tumour are often poorly discriminated by histological features and may be difficult to diagnose due to a lack of robust diagnostic tools. This is illustrated by marked variability in the reported frequencies across different epilepsy surgical series.

View Article and Find Full Text PDF

Conventional chondrosarcoma is the most common primary bone tumor in adults. Prognosis corresponds with tumor grade but remains variable, especially for individuals with grade (G) II disease. There are currently no biomarkers available for monitoring or prognostication of chondrosarcoma.

View Article and Find Full Text PDF

Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles and in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs.

View Article and Find Full Text PDF

Giant cell tumor of bone (GCTB) is a locally aggressive subarticular tumor. Having recently reported that H3.3 G34W mutations are characteristic of this tumor type, we have now investigated the sensitivity and specificity of the anti-histone H3.

View Article and Find Full Text PDF

Background: Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive.

View Article and Find Full Text PDF

Parosteal osteosarcoma, low-grade central osteosarcoma, and fibrous dysplasia share similar histological features that may pose a diagnostic challenge. The detection of GNAS mutations in primary bone tumors has been useful in clinical practice for diagnosing fibrous dysplasia. However, the recent report of GNAS mutations being detected in a significant proportion of parosteal osteosarcoma challenges the specificity of this mutation.

View Article and Find Full Text PDF

Digital PCR (dPCR) offers absolute quantification through the limiting dilution of template nucleic acid molecules and has the potential to offer high reproducibility. However, the robustness of dPCR has yet to be evaluated using complex genomes to compare different dPCR methods and platforms. We used DNA templates from the pathogen Mycobacterium tuberculosis to evaluate the impact of template type, master mixes, primer pairs and, crucially, extraction methods on dPCR performance.

View Article and Find Full Text PDF

Circulating cell-free DNA (cfDNA) is becoming an important clinical analyte for prenatal testing, cancer diagnosis and cancer monitoring. The extraction stage is critical in ensuring clinical sensitivity of analytical methods measuring minority nucleic acid fractions, such as foetal-derived sequences in predominantly maternal cfDNA. Consequently, quality controls are required for measurement of extraction efficiency, fragment size bias and yield for validation of cfDNA methods.

View Article and Find Full Text PDF

The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution.

View Article and Find Full Text PDF

The role of genetic instability in driving carcinogenesis remains controversial. Genetic instability should accelerate carcinogenesis by increasing the rate of advantageous driver mutations; however, genetic instability can also potentially retard tumour growth by increasing the rate of deleterious mutation. As such, it is unclear whether genetically unstable clones would tend to be more selectively advantageous than their genetically stable counterparts within a growing tumour.

View Article and Find Full Text PDF