Publications by authors named "Alice G Sorgo"

Methionine restriction (MetR) is one of the rare regimes that prolongs lifespan across species barriers. Using a yeast model, we recently demonstrated that this lifespan extension is promoted by autophagy, which in turn requires vacuolar acidification. Our study is the first to place autophagy as one of the major players required for MetR-mediated longevity.

View Article and Find Full Text PDF

Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR.

View Article and Find Full Text PDF

The trimeric SNF1 complex from Saccharomyces cerevisiae, a homolog of mammalian AMP-activated kinase, has been primarily implicated in signaling for the utilization of alternative carbon sources to glucose. We here find that snf1 deletion mutants are hypersensitive to different cell wall stresses, such as the presence of Calcofluor white, Congo red, Zymolyase or the glucan synthase inhibitor Caspofungin in the growth medium. They also have a thinner cell wall.

View Article and Find Full Text PDF

The opportunistic fungal pathogen Candida albicans has developed various ways to overcome iron restriction in a mammalian host. Using different surface proteins, among them membrane- and wall-localized glycosylphosphatidylinositol (GPI) proteins, it can exploit iron from host haemoglobin, ferritin and transferrin. Culturing C.

View Article and Find Full Text PDF

The human fungal pathogen Candida albicans can grow at temperatures of up to 45°C. Here, we show that at 42°C substantially less biomass was formed than at 37°C. The cells also became more sensitive to wall-perturbing compounds, and the wall chitin levels increased, changes that are indicative of wall stress.

View Article and Find Full Text PDF

The opportunistic fungal pathogen Candida albicans occupies various niches of the human body such as the skin and the mucosal surfaces of the gastrointestinal and urogenital tracts. It can also enter the blood stream and cause deadly, systemic infections, especially in immunocompromised patients, but also in immunocompetent individuals through inserted medical devices. To survive in these diverse host environments, C.

View Article and Find Full Text PDF

The major fungal pathogen Candida albicans can occupy diverse microenvironments in its human host. During colonization of the gastrointestinal or urogenital tracts, mucosal surfaces, bloodstream, and internal organs, C. albicans thrives in niches that differ with respect to available nutrients and local environmental stresses.

View Article and Find Full Text PDF

Neothyonidioside is a triterpene glycoside (TG) isolated from the sea cucumber, Australostichopus mollis, that is potently cytotoxic to S. cerevisiae, but does not permeabilize cellular membranes. We mutagenized S.

View Article and Find Full Text PDF

Fluconazole is a commonly used antifungal drug that inhibits Erg11, a protein responsible for 14α-demethylation during ergosterol synthesis. Consequently, ergosterol is depleted from cellular membranes and replaced by toxic 14α-methylated sterols, which causes increased membrane fluidity and drug permeability. Surface-grown and planktonic cultures of Candida albicans responded similarly to fluconazole at 0.

View Article and Find Full Text PDF

The ability of Candida albicans to switch from yeast to hyphal growth is essential for its virulence. The walls and especially the covalently attached wall proteins are involved in the primary host-pathogen interactions. Three hyphal induction methods were compared, based on fetal calf serum, the amino sugar N-acetylglucosamine (GlcNAc) and the mammalian cell culture medium Iscove's modified Dulbecco's medium (IMDM).

View Article and Find Full Text PDF

In many ascomycetous yeasts, the cell wall is composed of two main types of macromolecules: (a) polysaccharides, with a high content of beta-1,6- and beta-1,3-linked glucan chains and minor amounts of chitin; and (b) cell wall proteins of different types. Synthesis and maintenance of these macromolecules respond to environmental changes, which are sensed by the cell wall integrity (CWI) signal transduction pathway. We here present a first systematic analysis of the cell wall composition of the milk yeast, Kluyveromyces lactis.

View Article and Find Full Text PDF

The pathogenic fungus Candida albicans secretes a considerable number of hydrolases and other proteins. In-depth studies of the C. albicans secretome could thus provide new candidates for diagnostic markers and vaccine development.

View Article and Find Full Text PDF