Biomacromolecular antifreezes distinguish ice from water, function by binding to specific planes of ice, and could have many applications from cryobiology to aerospace where ice is a problem. In biology, antifreeze protein (AFP) activity is regulated by protein expression levels via temperature and light-regulated expression systems, but in the laboratory (or applications), the antifreeze activity is "always on" without any spatial or temporal control, and hence methods to enable this switching represent an exciting synthetic challenge. Introduction of an abiotic functionality into short peptides (e.
View Article and Find Full Text PDFAntifreeze proteins (AFPs) have many potential applications, ranging from cryobiology to aerospace, if they can be incorporated into materials. Here, a range of engineered AFP mutants were prepared and site-specifically conjugated onto RAFT polymer-stabilized gold nanoparticles to generate new hybrid multivalent ice growth inhibitors. Only the SNAP-tagged AFPs lead to potent 'antifreeze' active nanomaterials with His-Tag capture resulting in no activity, showing the mode of conjugation is essential.
View Article and Find Full Text PDFAntifreeze proteins and ice-binding proteins have been discovered in a diverse range of extremophiles and have the ability to modulate the growth and formation of ice crystals. Considering the importance of cryoscience across transport, biomedicine, and climate science, there is significant interest in developing synthetic macromolecular mimics of antifreeze proteins, in particular to reproduce their property of ice recrystallization inhibition (IRI). This activity is a continuum rather than an "on/off" property and there may be multiple molecular mechanisms which give rise to differences in this observable property; the limiting concentrations for ice growth vary by more than a thousand between an antifreeze glycoprotein and poly(vinyl alcohol), for example.
View Article and Find Full Text PDFJ Mater Chem B
November 2018
We show here a low molecular weight hydrogelator based on a functionalised-dipeptide which is stable down to temperatures of -12 °C despite being made from >99% water. This stabilty at low temperature can be extended to ∼-40 °C by gelling water : glycerol mixtures. The temperature range is wider than that of the glycerol : water mixtures alone.
View Article and Find Full Text PDFPoly(vinyl alcohol) (PVA) has emerged as the most potent mimic of antifreeze (glyco)proteins ice recrystallization inhibition (IRI) activity, despite its lack of structural similarities and flexible, rather than rigid, backbone. The precise spacing of hydroxyl groups is hypothesized to enable PVA to recognize the prism planes of ice but not the basal plane, due to hydroxyl pattern matching of the ice surface giving rise to the macroscopic activity. Here, well-defined PVA derived from reversible addition-fragmentation chain-transfer (RAFT) polymerization is immobilized onto gold nanoparticles to enable the impact of nanoscale assembly and confinement on the observed IRI activity.
View Article and Find Full Text PDFAll modern molecular biology and microbiology is underpinned by not only the tools to handle and manipulate microorganisms but also those to store, bank, and transport them. Glycerol is the current gold-standard cryoprotectant, but it is intrinsically toxic to most microorganisms: only a fraction of cells survive freezing and the presence of glycerol can impact downstream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors.
View Article and Find Full Text PDFAntifreeze glycoproteins (AFGPs) from polar fish are the most potent ice recrystallization (growth) inhibitors known, and synthetic mimics are required for low-temperature applications such as cell cryopreservation. Here we introduce facially amphipathic glycopolymers that mimic the three-dimensional structure of AFGPs. Glycopolymers featuring segregated hydrophilic and hydrophobic faces were prepared by ring-opening metathesis polymerization, and their rigid conformation was confirmed by small-angle neutron scattering.
View Article and Find Full Text PDF