Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied.
View Article and Find Full Text PDFThe role of muscle biopsy in the diagnostic workup of floppy infants is controversial. Muscle sampling is invasive, and often, results are not specific. The rapid expansion of genetic approach has made the muscle histopathology analysis less crucial.
View Article and Find Full Text PDFMitochondrial diseases (MDs) are a large group of genetically determined multisystem disorders, characterized by extreme phenotypic heterogeneity, attributable in part to the dual genomic control (nuclear and mitochondrial DNA) of the mitochondrial proteome. Advances in next-generation sequencing technologies over the past two decades have presented clinicians with a challenge: to select the candidate disease-causing variants among the huge number of data provided. Unfortunately, the clinical tools available to support genetic interpretations still lack specificity and sensitivity.
View Article and Find Full Text PDFIntroduction: The aim of this study was to report 36-month longitudinal changes using the North Star Ambulatory Assessment (NSAA) in ambulant patients affected by Duchenne muscular dystrophy amenable to skip exons 44, 45, 51 or 53.
Materials And Methods: We included 101 patients, 34 had deletions amenable to skip exon 44, 25 exon 45, 19 exon 51, and 28 exon 53, not recruited in any ongoing clinical trials. Five patients were counted to skip exon 51 and 53 since they had a single deletion of exon 52.
The aim was to assess 3-year longitudinal data using 6MWT in 26 ambulant boys affected by DMD carrying nonsense mutations and to compare their results to other small mutations. We also wished to establish, within the nonsense mutations group, patterns of change according to several variables. Patients with nonsense mutations were categorized according to the stop codon type newly created by the mutation and also including the adjacent 5' (upstream) and 3' (downstream) nucleotides.
View Article and Find Full Text PDFTwo patients with a paucisymptomatic hyperckemia underwent a skeletal muscle biopsy and massive gene panel to investigate mutations associated with inherited muscle disorders. In the SGCA gene, sequence analyses revealed a homozygous c.850C > T/p.
View Article and Find Full Text PDFObjective: Next-generation sequencing (NGS) was applied in molecularly undiagnosed asymptomatic or paucisymptomatic hyperCKemia to investigate whether this technique might allow detection of the genetic basis of the condition.
Methods: Sixty-six patients with undiagnosed asymptomatic or paucisymptomatic hyperCKemia, referred to tertiary neuromuscular centers over an approximately 2-year period, were analyzed using a customized, targeted sequencing panel able to investigate the coding exons and flanking intronic regions of 78 genes associated with limb-girdle muscular dystrophies, rhabdomyolysis, and metabolic and distal myopathies.
Results: A molecular diagnosis was reached in 33 cases, corresponding to a positive diagnostic yield of 50%.
Cobalamin C (cblC) defect is the most common inherited disorder of cobalamin metabolism. Developmental delay, behavioral problems, and maculopathy are common, but they have not been systematically investigated. The aim of this study was to define early neurodevelopment in cblC patients and the possible contribution of different factors, such as mode of diagnosis, age at diagnosis, presence of brain lesions and epilepsy.
View Article and Find Full Text PDFIntroduction: The aim of this international collaborative effort was to report 36-month longitudinal changes using the 6MWT in ambulant patients affected by Duchenne muscular dystrophy amenable to skip exons 44, 45, 51 or 53.
Materials And Methods: Of the 92 patients included in the study, 24 had deletions amenable to skip exon 44, 27 exon 45, 18 exon 51, and 28 exon 53. Five patients with a single deletion of exon 52 were counted in both subgroups skipping exon 51 and 53.
Objective: Thymidine kinase 2, encoded by the nuclear gene TK2, is required for mitochondrial DNA maintenance. Autosomal recessive TK2 mutations cause depletion and multiple deletions of mtDNA that manifest predominantly as a myopathy usually beginning in childhood and progressing relentlessly. We investigated the safety and efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies.
View Article and Find Full Text PDFWe report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported.
View Article and Find Full Text PDFCentronuclear myopathies (CNMs) are a group of clinically and genetically heterogeneous muscle disorders. To date, mutation in 7 different genes has been reported to cause CNMs but 30 % of cases still remain genetically undefined. Genetic investigations are often expensive and time consuming.
View Article and Find Full Text PDFWe describe the case of a woman in whom combination of a mitochondrial (MT-CYB) and a nuclear (SDHB) mutation was associated with clinical and metabolic features suggestive of a mitochondrial disorder. The mutations impaired overall energy metabolism in the patient's muscle and fibroblasts and increased cellular susceptibility to oxidative stress. To clarify the contribution of each mutation to the phenotype, mutant yeast strains were generated.
View Article and Find Full Text PDFThe m.3243A>G "MELAS" (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) mutation is one of the most common point mutations of the mitochondrial DNA, but its phenotypic variability is incompletely understood. The aim of this study was to revise the phenotypic spectrum associated with the mitochondrial m.
View Article and Find Full Text PDFWe used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case.
View Article and Find Full Text PDFNeuromuscular disorders are a broad group of inherited conditions affecting the structure and function of the motor system with polymorphic clinical presentation and disease severity. Although individually rare, collectively neuromuscular diseases have an incidence of 1 in 3,000 and represent a significant cause of disability of the motor system. The past decade has witnessed the identification of a large number of human genes causing muscular disorders, yet the underlying pathogenetic mechanisms remain largely unclear, limiting the developing of targeted therapeutic strategies.
View Article and Find Full Text PDFShort-chain acylCoA dehydrogenase (SCAD) deficiency is a rare mitochondrial disorder involving the beta-oxidation of fatty acylCoA compounds in chains of 4-6 carbons. Unlike other mitochondrial disorders, cases involving autoimmune diseases have not been described. We report a 15-year-old boy with SCAD deficiency who suffered from pernicious anaemia, vitiligo, scleroatrophic lichen and autoimmune thyroiditis.
View Article and Find Full Text PDFWe investigated two unrelated children with an isolated defect of mitochondrial complex III activity. The clinical picture was characterized by a progressive encephalopathy featuring early-onset developmental delay, spasticity, seizures, lactic acidosis, brain atrophy and MRI signal changes in the basal ganglia. Both children were compound heterozygotes for novel mutations in the human bc1 synthesis like (BCS1L) gene, which encodes an AAA mitochondrial protein putatively involved in both iron homeostasis and complex III assembly.
View Article and Find Full Text PDFWe investigated the use of pharmacological chaperones for the therapy of Pompe disease, a metabolic myopathy due to mutations of the gene encoding the lysosomal hydrolase α-glucosidase (GAA) and characterized by generalized glycogen storage in cardiac and skeletal muscle. We studied the effects of two imino sugars, deoxynojirimycin (DNJ) and N-butyldeoxynojirimycin (NB-DNJ), on residual GAA activity in fibroblasts from eight patients with different forms of Pompe disease (two classic infantile, two non-classic infantile onset, four late-onset forms), and with different mutations of the GAA gene. We demonstrated a significant increase of GAA activity (1.
View Article and Find Full Text PDFWe investigated the use of pharmacological chaperones for the therapy of Pompe disease, a metabolic myopathy due to mutations of the gene encoding the lysosomal hydrolase alpha-glucosidase (GAA) and characterized by generalized glycogen storage in cardiac and skeletal muscle. We studied the effects of two imino sugars, deoxynojirimycin (DNJ) and N-butyldeoxynojirimycin (NB-DNJ), on residual GAA activity in fibroblasts from eight patients with different forms of Pompe disease (two classic infantile, two non-classic infantile onset, four late-onset forms), and with different mutations of the GAA gene. We demonstrated a significant increase of GAA activity (1.
View Article and Find Full Text PDFWe studied nine infant patients with a combination of progressive neurological and hepatic failure. Eight children, including two sibling pairs and four singletons, were affected by Alpers' hepatopathic poliodystrophy. A ninth baby patient suffered of a severe floppy infant syndrome associated with liver failure.
View Article and Find Full Text PDFMitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive human disease due to mutations in the thymidine phosphorylase (TP) gene. TP enzyme catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxy-D-ribose 1-phosphate. We present evidence that thymidine metabolism is altered in MNGIE.
View Article and Find Full Text PDF