Publications by authors named "Alice Cont"

In the wild, bacteria are most frequently found in the form of multicellular structures called biofilms. Biofilms grow at the surface of abiotic and living materials with wide-ranging mechanical properties. The opportunistic pathogen Pseudomonas aeruginosa forms biofilms on indwelling medical devices and on soft tissues, including burn wounds and the airway mucosa.

View Article and Find Full Text PDF

Capsules are often used to protect chemical and biological entities from the environment, to control the timing and location of their release, or to facilitate the collection of waste. Their performance depends on the thickness and composition of their shells, which can be closely controlled if capsules are made from double emulsion drops that are produced with microfluidics. However, the fabrication of such double emulsions is delicate, limiting throughput and increasing costs.

View Article and Find Full Text PDF

Objectives: Radiofrequency ablation (RFA) is effective in reducing the volume of benign thyroid nodules. However, what parameters can influence the response to RFA is still unclear. The present study aimed to (1) investigate which ultrasound and technical parameters are potential determinants of the volumetric reduction; (2) develop a dose-response model, and (3) analyze the effects of RFA on ultrasound features.

View Article and Find Full Text PDF

During chronic infections and in microbiota, bacteria predominantly colonize their hosts as multicellular structures called biofilms. A common assumption is that biofilms exclusively interact with their hosts biochemically. However, the contributions of mechanics, while being central to the process of biofilm formation, have been overlooked as a factor influencing host physiology.

View Article and Find Full Text PDF

By applying a slow curing process, we show that biomolecules can be incorporated via a simple process as liquid stable phases inside a polydimethylsiloxane (PDMS) matrix. The process is carried out under mild conditions with regards to temperature, pH and relative humidity, and is thus suitable for application to biological entities. Fluorescence and enzymatic activity measurements show that the biochemical properties of the proteins and enzyme tested are preserved, without loss due to adsorption at the liquid-polymer interface.

View Article and Find Full Text PDF

Natural soft materials are often composed of proteins that self-assemble into well-defined structures and display mechanical properties that cannot be matched by manmade materials. These materials are frequently mimicked with hydrogels whose mechanical properties depend on their composition and the type and density of cross-links. Protocols to tune these parameters are well established and routinely used.

View Article and Find Full Text PDF