Publications by authors named "Alice C Gibb"

Teleost fishes that emerge onto land must produce effective terrestrial movements to return to the water. Using the Cyprinodontiformes as a model system, we examined a terrestrial behavior termed the tail-flip jump across a size range of individuals representing three species of aquatic killifishes (Gambusia affinis, Poecilia mexicana, and Jordanella floridae) and two species of amphibious killifishes (Kryptolebias marmoratus and Fundulus heteroclitus) to identify potential effects of size (mass) on jumping performance. The ballistic trajectory equation was used to partition the contributions of velocity (determined by acceleration and contact time) and takeoff angle to jump distance.

View Article and Find Full Text PDF

Walking can be defined broadly as a slow-speed movement produced when appendages interact with the ground to generate forward propulsion. Until recently, most studies of walking have focused on humans and a handful of domesticated vertebrates moving at a steady rate over highly simplified, static surfaces, which may bias our understanding of the unifying principles that underlie vertebrate locomotion. In the last few decades, studies have expanded to include a range of environmental contexts (e.

View Article and Find Full Text PDF

In the American Southwest, the fishes within the genus Gila evolved in an environment with seasonal rainstorms that caused stochastic flooding. Some species within this genus, such as bonytail (Gila elegans), possess locomotor morphologies that are similar to those seen in high-performance swimmers such as tuna and lamnid sharks. These shared features include a shallow caudal peduncle, lunate tail, and mechanisms to transmit force from the anterior musculature to the tail fin.

View Article and Find Full Text PDF

Over the last 100 years, fishes native to the Southwestern United States have faced a myriad of biotic and abiotic pressures which has resulted in most being federally listed as endangered or threatened. Most notably, water diversions and the introduction of non-native fishes have been the primary culprits in causing the downfall of native fish populations. We describe how recent studies of morphology, physiology, and behavior yield insights into the failed (occasionally successful) management of this vanishing biota.

View Article and Find Full Text PDF

Many teleost fishes with no apparent modifications for life on land are able to produce effective terrestrial locomotor behaviors, including a ballistic behavior called the "tail-flip" jump. Cyprinodontiformes (killifishes, Teleostei: Atherinomorpha) that live at the water's edge vary in morphology and inclination to emerge onto land. Do fish with an amphibious predisposition have extensive modification of the propulsive region of the body when compared to fully aquatic relatives? We quantified body shape and anatomy of the caudal peduncle and tail (the propulsive organ on land and in water) in 11 cyprinodontiform species and two outgroup taxa (Atherinomorpha).

View Article and Find Full Text PDF

Tidepool sculpins (Oligocottus maculosus) have been observed moving overland in the rocky intertidal, and we documented the terrestrial walking behavior that they use to accomplish this. We quantified the terrestrial movements of O. maculosus and compared them to (1) their aquatic locomotion, (2) terrestrial locomotion of closely-related subtidal species (Leptocottus armatus and Icelinus borealis), and (3) terrestrial movements of walking catfishes (Clarias spp.

View Article and Find Full Text PDF

Flatfishes use cyclic body undulations to force water into the sediment and fluidize substrate particles, displacing them into the water column. When water velocity decreases, suspended particles settle back onto the fish, hiding it from view. Burial may become more challenging as flatfishes grow because the area to be covered increases exponentially with the second power of length.

View Article and Find Full Text PDF

Morphological streamlining is often associated with physiological advantages for steady swimming in fishes. Though most commonly studied in pelagic fishes, streamlining also occurs in fishes that occupy high-flow environments. Before the installation of dams and water diversions, bonytail (Cyprinidae, ), a fish endemic to the Colorado River (USA), regularly experienced massive, seasonal flooding events.

View Article and Find Full Text PDF

Caudal-fin-based swimming is the primary form of locomotion in most fishes. As a result, many species have developed specializations to enhance performance during steady swimming. Specializations that enable high swimming speeds to be maintained for long periods of time include: a streamlined body, high-aspect-ratio (winglike) caudal fin, a shallow caudal peduncle, and high proportions of slow-twitch ("red") axial muscle.

View Article and Find Full Text PDF

Mummichogs (Fundulus heteroclitus; Cyprinodontiformes) are intertidal killifish that can breathe air and locomote on land. Our goals were to characterize the terrestrial locomotion of mummichogs and determine their method of navigation towards water in a terrestrial environment. We used high-speed video to record behavior during stranding experiments and found that mummichogs use a tail-flip jump to move overland, similarly to other Cyprinodontiformes.

View Article and Find Full Text PDF

A major challenge for aquatic vertebrates that invade land is feeding in the terrestrial realm. The capacity of the gape to become parallel with the ground has been shown to be a key factor to allow fishes to feed on prey lying on a terrestrial surface. To do so, two strategies have been identified that involve a nose-down tilting of the head: (1) by pivoting on the pectoral fins as observed in mudskippers, and (2) curling of the anterior part of the body supported by a long and flexible eel-like body as shown in eel-catfish.

View Article and Find Full Text PDF

Although the majority of teleost fishes possess a fused lower jaw (or mandible), some lineages have acquired a secondary joint in the lower jaw, termed the intramandibular joint (IMJ). The IMJ is a new module that formed within the already exceptionally complex teleost head, and disarticulation of two bony elements of the mandible potentially creates a "double-jointed" jaw. The apparent independent acquisition of this new functional module in divergent lineages raises a suite of questions.

View Article and Find Full Text PDF

When feeding, most aquatic organisms generate suction that draws prey into the mouth. The papers in this volume are a demonstration of this fact. However, under what circumstances is suction ineffective as a feeding mechanism? Here we consider the interplay between suction, ram, and biting, and analyze the contribution of each to the capture of prey by a wide variety of species of fish.

View Article and Find Full Text PDF

Aquatic vertebrates that emerge onto land to spawn, feed, or evade aquatic predators must return to the water to avoid dehydration or asphyxiation. How do such aquatic organisms determine their location on land? Do particular behaviors facilitate a safe return to the aquatic realm? In this study, we asked: will fully-aquatic mosquitofish (Gambusia affinis) stranded on a slope modulate locomotor behavior according to body position to facilitate movement back into the water? To address this question, mosquitofish (n = 53) were placed in four positions relative to an artificial slope (30° inclination) and their responses to stranding were recorded, categorized, and quantified. We found that mosquitofish may remain immobile for up to three minutes after being stranded and then initiate either a "roll" or a "leap".

View Article and Find Full Text PDF

We examined two sympatric desert fishes, Sonora suckers (Catostomus insignis) and desert suckers (Pantosteus clarkii), and asked, does feeding behavior facilitate trophic niche partitioning? To answer this question, we conducted laboratory-based feeding trials to determine whether morphology alone facilitates the diet separation between the relatively unspecialized, omnivorous Sonora sucker and the more morphologically specialized, algivorous desert sucker or whether behavioral differences accompany morphological specialization. We predicted that (1) algivorous desert suckers would maximize contact between jaws and substrate and produce a large mouth-gape to facilitate scraping attached food-material; (2) omnivorous Sonora suckers would be more effective suction feeders when consuming unattached food items from the benthos; and (3) because they are anatomically specialized for scraping, desert suckers could not alter their feeding behavior when presented with different prey types, whereas relatively unspecialized Sonora suckers could vary behavior with prey type. We found that both species maximized jaw contact when feeding on benthic-attached food, although desert suckers produced a greater gape area.

View Article and Find Full Text PDF

Despite having no obvious anatomical modifications to facilitate movement over land, numerous small fishes from divergent teleost lineages make brief, voluntary terrestrial forays to escape poor aquatic conditions or to pursue terrestrial prey. Once stranded, these fishes produce a coordinated and effective "tail-flip" jumping behavior, wherein lateral flexion of the axial body into a C-shape, followed by contralateral flexion of the body axis, propels the fish into a ballistic flight-path that covers a distance of multiple body lengths. We ask: how do anatomical structures that evolved in one habitat generate effective movement in a novel habitat? Within this context, we hypothesized that the mechanical properties of the axial skeleton play a critical role in producing effective overland movement, and that tail-flip jumping species demonstrate enhanced elastic energy storage through increased body flexural stiffness or increased body curvature, relative to non-jumping species.

View Article and Find Full Text PDF

Biomechanical models of feeding mechanisms elucidate how animals capture food in the wild, which, in turn, expands our understanding of their fundamental trophic niche. However, little attention has been given to modeling the protrusible upper jaw apparatus that characterizes many teleost species. We expanded existing biomechanical models to include upper jaw forces using a generalist butterflyfish, Chaetodon trichrous (Chaetodontidae) that produces substantial upper jaw protrusion when feeding on midwater and benthic prey.

View Article and Find Full Text PDF

Moving on land versus in water imposes dramatically different requirements on the musculoskeletal system. Although many limbed vertebrates, such as salamanders and prehistoric tetrapodomorphs, have an axial system specialized for aquatic locomotion and an appendicular system adapted for terrestrial locomotion, diverse extant teleosts use the axial musculoskeletal system (body plus caudal fin) to move in these two physically disparate environments. In fact, teleost fishes living at the water's edge demonstrate diversity in natural history that is reflected in a variety of terrestrial behaviors: (1) species that have only incidental contact with land (such as largemouth bass, Micropterus) will repeatedly thrash, which can roll an individual downhill, but cannot produce effective overland movements, (2) species that have occasional contact with land (like Gambusia, the mosquitofish, which evade predators by stranding themselves) will produce directed terrestrial movement via a tail-flip jump, and (3) species that spend more than half of their lives on land (like the mudskipper, Periopthalmus) will produce a prone-jump, a behavior that allows the fish to anticipate where it will land at the end of the flight phase.

View Article and Find Full Text PDF

The transition from aquatic to terrestrial habitats was a seminal event in vertebrate evolution because it precipitated a sudden radiation of species as new land animals diversified in response to novel physical and biological conditions. However, the first stages of this environmental transition presented numerous challenges to ancestrally aquatic organisms, and necessitated changes in the morphological and physiological mechanisms that underlie most life processes, among them movement, feeding, respiration, and reproduction. How did solutions to these functional challenges evolve? One approach to this question is to examine modern vertebrate species that face analogous demands; just as the first tetrapods lived at the margins of bodies of water and likely moved between water and land regularly, many extant fishes and amphibians use their body systems in both aquatic and terrestrial habitats on a daily basis.

View Article and Find Full Text PDF

Helostoma temminckii are known for a "kissing" behavior, which is often used in intraspecific interactions, and an unusual cranial morphology that is characterized by an intramandibular joint (IMJ). The IMJ is located within the lower jaw and aids in generating the eponymous kissing movement. In other teleost linages the IMJ is associated with the adoption of a substrate-grazing foraging habit.

View Article and Find Full Text PDF

The Colorado River drainage basin is home to a diverse but imperiled fish fauna; one putative challenge facing natives is competition with nonnatives. We examined fishes from Colorado River tributaries to address the following questions: Do natives and nonnatives from the same trophic guild consume the same prey items? Will a given species alter its behavior when presented with different prey types? Do different species procure the same prey types via similar feeding behaviors? Roundtail chub (Gila robusta) and smallmouth bass (Micropterus dolomieu), midwater predators, and Sonora sucker (Catostomus insignis) and common carp (Cyprinus carpio), benthic omnivores, were offered six ecologically relevant prey types in more than 600 laboratory trials. Native species consumed a broader array of prey than nonnatives, and species from a given trophic guild demonstrated functional convergence in key aspects of feeding behavior.

View Article and Find Full Text PDF

Many teleosts that live at the water's edge will voluntarily strand themselves to evade predators or escape poor conditions-this behavior has been repeatedly observed in the field for killifishes (Cyprinodontiformes). Although most killifishes are considered fully aquatic and possess no obvious morphological specializations to facilitate terrestrial locomotion, individuals from several different species have been observed moving across land via a "tail flip" behavior that generates a terrestrial jump. Like aquatic fast starts, terrestrial jumps are produced by high-curvature lateral flexion of the body (stage one), followed by contralateral flexion of the posterior body (stage two).

View Article and Find Full Text PDF

Many amphibious organisms undergo repeated aquatic to terrestrial transitions during their lifetime; limbless, elongate organisms that make such transitions must rely on axial-based locomotion in both habitats. How is the same anatomical structure employed to produce an effective behavior across such disparate habitats? Here, we examine an elongate amphibious fish, the ropefish (Erpetoichthys calabaricus), and ask: (1) how do locomotor movements change during the transition between aquatic and terrestrial environments and (2) do distantly related amphibious fishes demonstrate similar modes of terrestrial locomotion? Ropefish were examined moving in four experimental treatments (in which the water level was to lowered mimic the transition between environments) that varied from fully aquatic to fully terrestrial. Kinematic parameters (lateral excursion, wavelength, amplitude and frequency) were calculated for points along the midline of the body and compared across treatments.

View Article and Find Full Text PDF

Piscivory in fishes is often associated with the evolution of highly elongate jaws that achieve a large mouth opening, or gape. Belonesox belizanus, the pike killifish, has independently evolved this morphology, which is derived from short-jawed poeciliids within the Cyprinodontiformes. Using kinematic analysis of high-speed video footage, we observed a novel aspect of the elongate jaws of Belonesox; the premaxilla rotates dorsally during mouth opening, while the lower jaw rotates ventrally.

View Article and Find Full Text PDF