Differential scanning calorimetry (DSC) is an important technique to measure the thermodynamics of protein unfolding (or folding). Information including the temperature for the onset of unfolding, the melt transition temperature (T), enthalpy of unfolding (ΔH), and refolding index (RI) are useful for evaluating the heat stability of proteins for a range of biochemical, structural biology, industrial, and pharmaceutical applications. We describe a procedure for careful sample preparation of proteins for DSC measurements and data analysis to determine a range of thermodynamic parameters.
View Article and Find Full Text PDFThe overall physical properties of tissues emerge in a complex manner from the properties of the component cells and other constituent materials from which the tissue is formed, across multiple length scales ranging from nanometres to millimetres. Recent studies have suggested that interfacial tension between cells contributes significantly to the mechanical properties of tissues and that the overall surface tension is determined by the ratio of adhesion tension to cortical tension. Using cavitation rheology (CR), we have measured the interfacial properties and the elastic modulus of spheroids formed from HEK cells.
View Article and Find Full Text PDFBigels (or double network gels) are an emerging class of tuneable soft materials characterized by two discrete but interpenetrating gel networks in which both networks contribute to the physical and mechanical properties of the material. We describe, for the first time, the formation of a bigel network from two different proteins. By careful control of solution conditions, kinetics and specific protein chemistry the inter-species interactions in the two protein system are weak compared with the intra-protein attraction, which leads to bigel formation.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2013
DSC analysis has been used to quantify the reversibility of unfolding following thermal denaturation of lysozyme. Since the temperature at which protein unfolding occurs, Tm, varies with different solution conditions, the effect on the melting temperature and the degree of refolding after thermal denaturation in low ionic strength sodium phosphate buffers (5-1000mM) over a range of pH (5-9) in the presence/absence of disaccharides is examined. This study compares the enthalpies of unfolding during successive heating cycles to quantify reversibility following thermal denaturation.
View Article and Find Full Text PDF