Publications by authors named "Alice Berardo"

The fascia lata (FL) is a multi-layered connective tissue with anisotropic mechanical behavior due to its fiber organization. It plays a key role in musculoskeletal functionality, making it important in tissue engineering. Understanding its mechanical response to stimuli like movement or applied pressure is crucial, as the elastic and viscoelastic behavior can vary significantly based on morphological characteristics, harvesting site, and load direction.

View Article and Find Full Text PDF

The relatively recent adoption of Endoscopic Sleeve Gastroplasty (ESG) amongst obese patients has gained approval within the surgical community due to its notable benefits, including significant weight loss, safety, feasibility, repeatability, and potential reversibility. However, despite its promising clinical outcomes and reduced invasiveness, there is still a lack of standardised procedures for performing ESG. Multiple suture patterns and stitching methods have been proposed over time, yet rational tools to quantify and compare their effects on gastric tissues are absent.

View Article and Find Full Text PDF

Superficial fascia is a fibrofatty tissue found throughout the body. Initially described in relation to hernias, it has only recently received attention from the scientific community due to new evidence on its role in force transmission and structural integrity of the body. Considering initial difficulties in its anatomical identification, to date, a characterization of the superficial fascia through mechanical tests is still lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Plantar adipose tissue, located in different regions of the foot, adapts its structure and mechanical properties to absorb impact and support body weight.
  • The study involved experiments on human tissue samples that measured the elastic properties and non-linear behavior of plantar adipose tissue in various foot regions.
  • Results demonstrated significant differences in elastic moduli across regions, leading to the development of a visco-hyperelastic model that may be useful for future computational models of foot biomechanics.
View Article and Find Full Text PDF

Background And Objectives: Within the framework of computational biomechanics, finite element models of the gastric district could be seen as a potential clinical tool not only to study the effects apported by bariatric surgery, but also to compare different surgical techniques such as the new emerging Endoscopic Sleeve Gastroplasty (ESG) with respect to well-established ones (such as the Laparoscopic Sleeve Gastrectomy, LSG).

Methods: This work realized a fully computational comparison between the outcomes obtained from 10 patient-specific stomach models, which were used to simulate ESG, and the complementary results obtained from models representing the post-LSG of the same subjects. Specifically, once the ESG was simulated, a mechanical stimulus was applied by increasing an intragastric pressure up to a maximum of 5 kPa, in order to replicate the process of food intake, as well as for post-LSG models.

View Article and Find Full Text PDF

Biomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties.

View Article and Find Full Text PDF

Background And Objective: In the field of urology, the pressure-flow study (PFS) is an essential urodynamics practise which requires the patient's transurethral catheterization during the voiding phase of micturition to evaluate the functionality of the lower urinary tract (LUT) and reveal the pathophysiology of its dysfunctionality. However, the literature evidences confusion regarding the interference of the catheterization on the urethral pressure-flow behaviour.

Methods: The present research study represents the first Computational Fluid-Dynamics (CFD) approach to this urodynamics issue, analysing the influence of a catheter in the male LUT through case studies which included the inter-individual and intra-individual dependence.

View Article and Find Full Text PDF

Human Fascia Lata (FL) is a connective tissue with a multilayered organization also known as aponeurotic fascia. FL biomechanics is influenced by its composite structure formed by fibrous layers (usually two) separated by loose connective tissue. In each layer, most of the collagen fibers run parallel in a distinct direction (with an interlayer angle that usually ranges from 75-80°), mirroring the fascia's ability to adapt and withstand specific tensile loads.

View Article and Find Full Text PDF

Background And Objectives: Gastro-oesophageal reflux disease (GERD) consists in the passage of gastric acid content from the stomach to the oesophagus, causing burns and deteriorating the quality of life. Laparoscopic Sleeve Gastrectomy (LSG) could induce de novo GERD and worsen pre-existing GERD because of the higher gastric pressurisation, reduction of stomach volume and a wider His-angle. In the proposed work, various computational gastric 2D models were developed to understand the effects of variables such as the His-angle, the antral dimension, and the bolus viscosity on the reflux increase.

View Article and Find Full Text PDF

In applied biotremology, vibrational signals or cues are exploited to manipulate the target species behaviour. To develop an efficient pest control strategy, other than a detailed investigation into the pest biology and behaviour, the role of the substrate used to transmit the signal is an important feature to be considered, since it may affect vibrations spreading and effective signal transmission and perception. Therefore, we used a multi-disciplinary approach to develop a control technique against the greenhouse whitefly, First, an vibrational disruptive noise has been developed, based on the acquired knowledge about the mating behaviour and vibrational communication of the mated species.

View Article and Find Full Text PDF

Mechanical stimuli are fundamental in the development of organs and tissues, their growth, regeneration or disease. They influence the biochemical signals produced by the cells, and, consequently, the development and spreading of a disease. Moreover, tumour cells are usually characterized by a decrease in the cell mechanical properties that may be directly linked to their metastatic potential.

View Article and Find Full Text PDF

Background: Obesity has become a global epidemic. Bariatric surgery is considered the most effective therapeutic weapon in terms of weight loss and improvement of quality of life and comorbidities. Laparoscopic sleeve gastrectomy (LSG) is one of the most performed procedures worldwide, although patients carry a nonnegligible risk of developing post-operative GERD and BE.

View Article and Find Full Text PDF

Background: Many groups of insects utilize substrate-borne vibrations for intraspecific communication. This characteristic makes them a suitable model for exploring the use of vibrations as a tool for pest control as an alternative to the use of chemicals. Detailed knowledge of species communication is a prerequisite to select the best signals to use.

View Article and Find Full Text PDF

Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO), we report a disordered protein-GO co-assembling system that through a diffusion-reaction process and disorder-to-order transitions generates hierarchically organized materials that exhibit high stability and access to non-equilibrium on demand.

View Article and Find Full Text PDF

Knots are fascinating topological elements, which can be found in both natural and artificial systems. While in most of the cases, knots cannot be loosened without breaking the strand where they are tightened, herein, attention is focused on slip or running knots, which on the contrary can be unfastened without compromising the structural integrity of their hosting material. Two different topologies are considered, involving opposite unfastening mechanisms, and their influence on the mechanical properties of natural fibers, as silkworm silk raw and degummed single fibers, is investigated and quantified.

View Article and Find Full Text PDF

The combination of high strength and high toughness is a desirable feature that structural materials should display. However, while in the past, engineers had to compromise on either strength or toughness depending on the requested application, nowadays, new toughening strategies are available to provide strong materials with high toughness. In this paper, we focus on one of such strategy, which requires no chemical treatment, but the implementation of slip knots with optimized shape and size in the involved material, which is silkworm silk in this case.

View Article and Find Full Text PDF