Fast-paced selective pressures imposed by climate change and anthropogenic activities call for adaptive evolutionary responses to emerge at ecological timescales. However, the evolution and heritability of genomic variation underlie mechanistic constraints, which dictate a slower pace of adaptation exclusively relying on standing genetic variation and novel mutations. Environmentally responsive epigenetic mechanisms can allow acclimatisation and adaptive phenotypes to arise faster than DNA sequence-based mechanisms alone.
View Article and Find Full Text PDFTo date, studies of the impacts of climate warming on individuals and populations have mostly focused on mortality and thermal tolerance. In contrast, much less is known about the consequences of sublethal effects, which are more challenging to detect, particularly in wild species with cryptic life histories. This necessitates the development of molecular tools to identify their signatures.
View Article and Find Full Text PDFOngoing climatic shifts and increasing anthropogenic pressures demand an efficient delineation of conservation units and accurate predictions of populations' resilience and adaptive potential. Molecular tools involving DNA sequencing are nowadays routinely used for these purposes. Yet, most of the existing tools focusing on sequence-level information have shortcomings in detecting signals of short-term ecological relevance.
View Article and Find Full Text PDFAntibiotic resistance is a priority public health problem resulting from eco-evolutionary dynamics within microbial communities and their interaction at a mammalian host interface or geographical scale. The links between mammalian host genetics, bacterial gut community, and antimicrobial resistance gene (ARG) content must be better understood in natural populations inhabiting heterogeneous environments. Hybridization, the interbreeding of genetically divergent populations, influences different components of the gut microbial communities.
View Article and Find Full Text PDFParasites have been proposed to modulate the fitness of hybridizing hosts in part based on observations in the European house mouse hybrid zone (HMHZ), a tension zone in which hybrids show reduced fitness. We here review evidence (1) for parasite load differences in hybrid versus parental mice and (2) for health and fitness effects of parasites promoting or preventing introgression and hybridization. The question of relative resistance or susceptibility of hybrids to parasites in the HMHZ has long been controversial.
View Article and Find Full Text PDFBackground: Counting parasite transmission stages in faeces is the classical measurement to quantify "parasite load". DNA-based quantifications of parasite intensities from faecal samples are relatively novel and often validated against such counts. When microscopic and molecular quantifications do not correlate, it is unclear whether oocyst counts or DNA-based intensity better reflects biologically meaningful concepts.
View Article and Find Full Text PDFResistance (host capacity to reduce parasite burden) and tolerance (host capacity to reduce impact on its health for a given parasite burden) manifest two different lines of defense. Tolerance can be independent from resistance, traded off against it, or the two can be positively correlated because of redundancy in underlying (immune) processes. We here tested whether this coupling between tolerance and resistance could differ upon infection with closely related parasite species.
View Article and Find Full Text PDFIntracellular parasites of the genus are described as tissue/host-specific. Phylogenetic classification of rodent suggested that some species have a broader host range than previously assumed. We explore whether spp.
View Article and Find Full Text PDFGenetic diversity in animal immune systems is usually beneficial. In hybrid recombinants, this is less clear, as the immune system could also be impacted by genetic conflicts. In the European house mouse hybrid zone, the long-standing impression that hybrid mice are more highly parasitized and less fit than parentals persists despite the findings of recent studies.
View Article and Find Full Text PDFDetection and quantification of coccidia in studies of wildlife can be challenging. Therefore, prevalence of coccidia is often not assessed at the parasite species level in non-livestock animals. Parasite species - specific prevalences are especially important when studying evolutionary questions in wild populations.
View Article and Find Full Text PDFRapid, cost-effective, efficient, and reliable helminth species identification is of considerable importance to understand host-parasite interactions, clinical disease, and drug resistance. Cyathostomins (Nematoda: Strongylidae) are considered to be the most important equine parasites, yet research on this group is hampered by the large number of 50 morphologically differentiated species, their occurrence in mixed infections with often more than 10 species and the difficulties associated with conventional identification methods. Here, MALDI-TOF MS, previously successfully applied to identify numerous organisms, is evaluated and compared with conventional and molecular genetic approaches.
View Article and Find Full Text PDF