There are genetic and environmental risk factors that contribute to the development of cognitive decline in Alzheimer's disease (AD). Some of these include the genetic predisposition of the apolipoprotein E4 genotype, consuming a high-fat diet (HFD), and the female sex. Brain insulin receptor resistance and deficiency have also been shown to be associated with AD and cognitive impairment.
View Article and Find Full Text PDFTargeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery.
View Article and Find Full Text PDFBackground: A number of peptide incretin receptor agonists (IRAs) show promise as therapeutics for Alzheimer's disease (AD) and Parkinson's disease (PD). Transport across the blood-brain barrier (BBB) is one way for IRAs to act directly within the brain. To determine which IRAs are high priority candidates for treating these disorders, we have studied their brain uptake pharmacokinetics.
View Article and Find Full Text PDFExercise has multiple beneficial effects including improving peripheral insulin sensitivity, improving central function such as memory, and restoring a dysregulated blood-brain barrier (BBB). Central nervous system (CNS) insulin resistance is a common feature of cognitive impairment, including Alzheimer's disease. Delivery of insulin to the brain can improve memory.
View Article and Find Full Text PDF