J Biomed Mater Res B Appl Biomater
February 2015
The tissue adhesive 2-octyl cyanoacrylate (OCA) was encapsulated in polyurethane microshells and incorporated into bone cement to form a catalyst free, self-healing bone cement comprised of all clinically approved components. The bending strength, modulus, and fatigue lifetime were investigated in accordance with ASTM and ISO standards for the testing of PMMA bone cement. The bending strength of bone cement specimens decreased with increasing wt % capsules content for capsules without or with OCA, with specimens of <5 wt % capsule content showing minimal effect.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2014
The water-reactive tissue adhesive 2-octyl cyanoacrylate (OCA) was microencapsulated in polyurethane shells and incorporated into Palacos R bone cement. The tensile and compressive properties of the composite material were investigated in accordance with commercial standards, and fracture toughness of the capsule-embedded bone cement was measured using the tapered double-cantilever beam geometry. Viability and proliferation of MG63 human osteosarcoma cells after culture with extracts from Palacos R bone cement, capsule-embedded Palacos R bone cement, and OCA were also analyzed.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2012
Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented.
View Article and Find Full Text PDFThe goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be considered zeroth generation self-healing materials, then taxonomically speaking, first generation self-healing materials describe approaches that "halt" and "fill" damage, whereas second generation self-healing materials strive to "fully restore" the prefailed material structure.
View Article and Find Full Text PDF