Publications by authors named "Alica Rosova"

Different phases of GaO have been regarded as superior platforms for making new-generation high-performance electronic devices. However, understanding of thermal transport in different phases of nanoscale GaO thin-films remains challenging, owing to the lack of phonon transport models and systematic experimental investigations. Here, thermal conductivity (TC) and thermal boundary conductance (TBC) of the α-, β-, and (001) κ-GaO thin films on sapphire are investigated.

View Article and Find Full Text PDF

Metal organic chemical vapor deposition was used to grow N-polar InAlN on sapphire substrates. P-doping was provided by a precursor flow of CpMg between 0 and 130 nmol/min, reaching a CpMg/III ratio of 8.3 × 10.

View Article and Find Full Text PDF

We report on crystal structure and thermal stability of epitaxial ε/κ-Ga2O3 thin films grown by liquid-injection metal−organic chemical vapor deposition (LI-MOCVD). Si-doped Ga2O3 films with a thickness of 120 nm and root mean square surface roughness of ~1 nm were grown using gallium-tetramethylheptanedionate (Ga(thd)3) and tetraethyl orthosilicate (TEOS) as Ga and Si precursor, respectively, on c-plane sapphire substrates at 600 °C. In particular, the possibility to discriminate between ε and κ-phase Ga2O3 using X-ray diffraction (XRD) φ-scan analysis or electron diffraction analysis using conventional TEM was investigated.

View Article and Find Full Text PDF

In(Ga)N epitaxial layers were grown on on-axis and off-axis (0001) sapphire substrates with an about 1100 nm-thick GaN buffer layer stack using organometallic chemical vapor deposition at 600 °C. The In(Ga)N layers consisted of a thin (~10-25 nm) continuous layer of small conical pyramids in which large conical pyramids with an approximate height of 50-80 nm were randomly distributed. The large pyramids were grown above the edge-type dislocations which originated in the GaN buffer; the dislocations did not penetrate the large, isolated pyramids.

View Article and Find Full Text PDF

Few-layer MoS films are promising candidates for applications in numerous areas, such as photovoltaics, photocatalysis, nanotribology, lithium batteries, hydro-desulfurization catalysis and dry lubricants, especially due to their distinctive electronic, optical, and catalytic properties. In general, two alignments of MoS layers are possible - the horizontal and the vertical one, having different physicochemical properties. Layers of both orientations are conventionally fabricated by a sulfurization of pre-deposited Mo films.

View Article and Find Full Text PDF

Topography and leakage current maps of TiO2 films grown by atomic layer deposition on RuO2 electrodes using either a TiCl4 or a Ti(O-i-C3H7)4 precursor were characterized at nanoscale by conductive atomic force microscopy (CAFM). For both films, the leakage current flows mainly through elevated grains and not along grain boundaries. The overall CAFM leakage current is larger and more localized for the TiCl4-based films (0.

View Article and Find Full Text PDF