Publications by authors named "Alibek Issakhov"

In the paper, a mathematical model was constructed that describes the specifications of the wind flow and the dispersion of pollutants, taking into account the variable temperature on the roadway surface, which varies depending on the time for some quarter of the city of Almaty. The impact of the traffic tidal flow was studied based on the data of measuring passing vehicles as a source of pollution by the CFD and on the spatial distribution of pollutants for various types of pollution. A test problem was performed to validate the numerical algorithm and the mathematical model.

View Article and Find Full Text PDF

The work focuses on the behavior of heated effluents discharged at elevated temperatures into the Ilek River, which is located in the city of Aktobe, Kazakhstan, as a result of industrial activities. This study is aimed at studying the dispersion characteristics of heated effluents in the near and far fields at different flow rates and dynamic conditions of the river. The chemical reaction, which is formed as a result of the combination of the ejected substance and the substance in water, is numerically investigated.

View Article and Find Full Text PDF

This paper presents the numerical results of particle propagation in open space, taking into account the temperature of the human body and the surface of the ground. And also, the settling of particles or droplets under the action of gravitational force and transport in the open air is taken into account, taking into account the temperature during the process of breathing and sneezing or coughing. The temperature of the body and the surface of the ground, different rates of particle emission from the mouth, such as breathing and coughing or sneezing, are numerically investigated.

View Article and Find Full Text PDF

In this work, we numerically investigate the process of atmospheric air pollution in idealized urban canyons along the road in the presence of a viaduct, taking into account different height of barriers. To solve this problem, the 3D Reynolds-averaged Navier-Stokes equations (RANS) were used. The closure of this system of equations was achieved by using various turbulent models.

View Article and Find Full Text PDF

The new coronavirus disease COVID-19 has caused a worldwide pandemic to be declared in a very short period of time. The complexity of the infection lies in asymptomatic carriers that can inadvertently transmit the virus through airborne droplets. This kind of viral disease can infect the human body with tiny particles that carry various bacteria that are generated by the respiratory system of infected patients.

View Article and Find Full Text PDF

Among the wide variety of synthetic transformations of inexpensive and abundant feedstock alkenes, vicinal difunctionalization of carbon-carbon double bonds represent one of the most powerful and effective strategies for the introduction of two distinct functional groups into target compounds in a one-pot process. In this context, the direct alkoxysulfenylation of alkenes has emerged as an elegant method to construct valuable β-alkoxy sulfides in an atom- and pot-economic manner utilizing readily accessible starting materials. Here, we review the available literature on this appealing research topic by hoping that it will be beneficial for eliciting further research and thinking in this domain.

View Article and Find Full Text PDF

Needless to say that organosulfur compounds with sulfur-nitrogen bonds have found various applications in diverse fields such as pharmaceuticals, agrochemicals, polymers, and so forth. Three major groups of such compounds are sulfenamides, sulfinamides, and sulfonamides which have been widely applied as building blocks in medical chemistry. Owing to their significant role in drug design and discovery programs, the search for and development of efficient, environmentally friendly, and economic processes for the preparation of the title compounds is of great importance in the pharmaceutical industry.

View Article and Find Full Text PDF

Owing to the prevalence of hydroxyl groups on molecules, much attention has been paid to the synthesis of functionalized organic compounds by dehydroxylative functionalization of parent alcohols. In this context, dehydroxylative trifluoromethylation, trifluoromethoxylation, trifluoromethylthiolation, and trifluoromethylselenylation of readily available alcohols have recently emerged as intriguing protocols for the single-step construction of diverse structures bearing C-CF, C-OCF, C-SCF, and C-SeCF bonds, respectively. This Mini-Review aims to summarize the major progress and advances in this appealing research area with special emphasis on the mechanistic features of the reaction pathways.

View Article and Find Full Text PDF

In this paper, numerical modeling of concentration propagation using various types of barriers and trees with porosity properties in an idealized urban canyon to protect nearby houses was considered. To solve this problem, a modification of the Reynolds-averaged Navier-Stokes equations is used to take into account the porous medium. To validate the mathematical model and the numerical algorithm, a test problem was solved without taking into account various barriers with a source of pollution.

View Article and Find Full Text PDF

With the advent of new technologies and globalization of business, supply chains have turned into indispensable tools for gaining competitive advantage. The application of new technologies like blockchain can benefit sustainable energy supply chains by improving chain and logistics operations in the areas of trust, transparency and accountability, cooperation, information sharing, financial exchanges, and supply chain integration. However, the efforts to adopt such technologies in supply chains tend to face many challenges and challenges, which can seriously threaten their success.

View Article and Find Full Text PDF

In this study, "peristaltic transport of hybrid nanofluid" inside a rectangular duct is examined. Water (base fluid) is used with two types of nanoparticles, namely, single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT). The viscous dissipation effect comes out as the prime heat generation source as compared to the conduction of molecules.

View Article and Find Full Text PDF

Viscous flow between two sinusoidally deforming curved concentric tubes is mathematically investigated for the first time. Exact solutions are computed to analyse the flow between these two tubes and graphical outcomes are included for a thorough analysis of the solutions. The present article has prime applications in endoscopy as a novel peristaltic endoscope is introduced first time for a curved sinusoidal tube.

View Article and Find Full Text PDF

The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is mathematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson fluid model for this flow problem. The blood flow is confined in such arteries due to the presence of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow through such arteries.

View Article and Find Full Text PDF

In this study, numerical simulations of the movement and emissions dispersion of two pollutants (sulfur dioxide(SO) and carbon dioxide(CO)) into the atmospheric boundary layer were considered under natural atmospheric conditions. To test the numerical algorithm and to select the optimal turbulent model, the test problem was solved numerically. The obtained computational data were compared with measurement data and values from the computation of other authors and the SST k-omega model illustrated the closest values to the data from the experiment, this is achieved by modifying the boundary condition for turbulent kinetic energy.

View Article and Find Full Text PDF

A mathematical model is presented to analyse the flow characteristics and heat transfer aspects of a heated Newtonian viscous fluid with single wall carbon nanotubes inside a vertical duct having elliptic cross section and sinusoidally fluctuating walls. Exact mathematical computations are performed to get temperature, velocity and pressure gradient expressions. A polynomial solution technique is utilized to obtain these mathematical solutions.

View Article and Find Full Text PDF

The spread of the novel coronavirus disease (COVID-19) continues to show that geographic barriers alone cannot contain the virus. Asymptomatic carriers play a critical role in the nature of this virus, which is rapidly escalating into a global pandemic. Asymptomatic carriers can inadvertently transmit the virus through the air stream.

View Article and Find Full Text PDF

Background And Objective: Some types of cancer cause rapid cell growth, while others cause cells to grow and divide at a slower rate. Certain forms of cancer result in visible growths called tumors. This work proposes an inverse estimation of the size and location of the tumor using a feedforward Neural Network (FFNN) model.

View Article and Find Full Text PDF

Background And Objective: Arterial diseases would lead to several serious disorders in the cardiovascular system such as atherosclerosis. These disorders are mainly caused by the presence of fatty deposits, cholesterol and lipoproteins inside blood vessel. This paper deals with the analysis of non-Newtonian magnetic blood flow in an inclined stenosed artery.

View Article and Find Full Text PDF

A comprehensive mathematical model is presented to study the peristaltic flow of Bingham viscoplastic micropolar fluid flow inside a microlength channel with electro-osmotic effects. The electro-osmotic effects are produced due to an axially applied electric field. The circulation of this electric potential is calculated by utilizing Poisson Boltzmann equation.

View Article and Find Full Text PDF

The functions of the nasal cavity are very important for maintaining the internal environment of the lungs since the inner walls of the nasal cavity control the temperature and saturation of the inhaled air with water vapor until the nasopharynx is reached. In this paper, three-dimensional computational studies of airflow transport in the models of the nasal cavity were carried out for the usual inspiratory velocity in various environmental conditions. Three-dimensional numerical results are compared with experimental data and calculations of other authors.

View Article and Find Full Text PDF

The present paper addresses microvascular blood flow with heat and mass transfer in complex wavy microchannel modulated by electroosmosis. Investigation is carried out with joule heating and chemical reaction effects. Further, viscous dissipation is also considered.

View Article and Find Full Text PDF

This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages.

View Article and Find Full Text PDF