This paper presents a detailed study that maps the surface charges and dopant distribution on the electropolymerized thin film of polyaniline-poly(styrenesulfonate) (PANI/PSS). The focus is on two distinct states of PANI/PSS: the fully doped emeraldine salt (ES/PSS) and the dedoped emeraldine base (EB/PSS). This investigation utilizes advanced frequency modulation electrostatic force microscopy (FM-EFM) and atomic force microscopy (AFM).
View Article and Find Full Text PDFThe conductivity of polyaniline (PANI) is ascribed to its emeraldine salt (PANI-ES), which is formed by protonation of its emeraldine base (PANI-EB) by acids. Generally, mineral acids are used for this purpose, but the use of dopants and additives to maintain the required acidity provides an alternative method to the preparation of PANI-ES. The present work attempts to achieve the protonation by the use of a weak organic acid, namely, 6-cyano-2-naphthol (6CN2), which is generally used as a superphotoacid, as its excited state pKa is significantly smaller than its ground state pKa.
View Article and Find Full Text PDFConducting polymers, especially polyaniline (PAni), have been extensively used in biosensor applications. A protocol for covalent immobilization of human IgG on polyaniline using glutaraldehyde as the cross-linker is described in this report and utilized in development of a piezoelectric immunosensor. Here, PAni was used as the substrate for immobilization.
View Article and Find Full Text PDFWe report on the design and development of a novel label-free DNA sensor based on conducting poly(3,4-ethylenedioxythiophene) for the direct detection and quantification of target ssDNA.
View Article and Find Full Text PDF