Paclitaxel (Taxol((R))) binding to the conformation of human serum albumin assumed in the presence of long-chain fatty acids was studied by automated docking. Reduced binding affinities at both the primary and secondary sites were predicted, compared to those characterizing the interaction with the fatty acid-free protein. The baccatin core of paclitaxel was found to play a more important role than its C13 side chain in determining the ligand binding mode as well as in contributing to the overall binding energy at the primary site.
View Article and Find Full Text PDFA computational approach was used to study the interaction of the potent anticancer drug paclitaxel (Taxol) with human serum albumin. The primary and secondary binding sites were located at the interface of subdomains IIA and IIIA, and in the cleft between domains I and III of the protein, respectively. The C13 side chain and the baccatin core of paclitaxel were found to contribute approximately equally to the binding energy at the primary site, whereas the binding mode appears to be governed by the C13 side chain.
View Article and Find Full Text PDF