Coordination of ruthenium arene fragments on carbosilane dendrimers' surface greatly increases their antitumor properties. Newly synthetized ruthenium dendrimers are water-soluble, monodisperse and stable. Since carbosilane dendrimers are good carriers of drugs and genes, the presence of ruthenium in their structure makes them promising candidates for new drug delivery systems with improved antitumor potential.
View Article and Find Full Text PDFThe lack of an appropriate intracellular delivery system for therapeutic nucleic acids (TNAs) is a major problem in molecular biology, biotechnology, and medicine. A relatively new class of highly symmetrical hyperbranched polymers, called dendrimers, shows promise for transporting small TNAs into both cells and target tissues. Dendrimers have intrinsic advantages for this purpose: their physico-chemical and biological properties can be controlled during synthesis, and they are able to transport large numbers of TNA molecules that can specifically suppress the expression of single or multiple targeted genes.
View Article and Find Full Text PDFDendrimers, which are considered as one of the most promising tools in the field of nanobiotechnology due to their structural organization, showed a great potential in gene therapy, drug delivery, medical imaging and as antimicrobial and antiviral agents. This article is devoted to study interactions between new carbosilane-based metallodendrimers containing ruthenium and anti-cancer small interfering RNA (siRNA). Formation of complexes between anti-cancer siRNAs and Ru-based carbosilane dendrimers was evaluated by transmission electron microscopy, circular dichroism and fluorescence.
View Article and Find Full Text PDFThrombin is an essential part of the blood coagulation system; it is a serine protease that converts soluble fibrinogen into insoluble strands of fibrin, and catalyzes many other coagulation-related reactions. Absorption at its surface of small nanoparticles can completely change the biological properties of thrombin. We have analyzed the influence on thrombin of 3 different kinds of small nanoparticles: dendrimers (phosphorus-based, carbosilane based and polyamidoamine) and 2 hybrid systems containing carbosilane, viologen and phosphorus dendritic scaffolds in one single molecule, bearing different flexibility, size and surface charge.
View Article and Find Full Text PDFIn the field of nanotechnology, dendrimers represent a new class of highly branched macromolecules that is receiving a stimulating and rising interest. The structural organization of these synthetic macromolecules provides promising opportunities for using them as nano-carriers of drugs or gene material to be delivered to the target cells. For applications of dendrimers as drug carriers, analysis of their specific interactions with biological structures at molecular level is very important.
View Article and Find Full Text PDF