The ζ-potential of a colloidal quantum dot (QD) in solution has a strong impact on its photoluminescence emission quantum yield as well as the population lifetime. In this study we show that varying the surface charged groups on CdSe/ZnS QDs allows one to tune the ζ-potential and, with it, to control the quantum yield of emission as well as the recombination dynamics. We infer that the net charge density within the slipping plane around the QD in the solution strongly affects the nonradiative recombination processes, depending on the surface charge sign and value.
View Article and Find Full Text PDFSince CdSe nanoplatelets were reported to have a ten-fold higher two-photon (2P) absorption coefficient as compared to quantum dots, we examined their applicability for cell labeling and 2P imaging. CdSSe/ZnCdS core-shell nanoplatelets and CdSe/ZnS quantum dots, both emitting at 585 nm were encapsulated with an amphiphilic zwitterionic polymer having slightly positive zeta potential. As measured with flow cytometry, glioma C6 cells demonstrated equally efficient uptake of nanoplatelets and quantum dots, despite the different sizes of these two types of nanoparticles.
View Article and Find Full Text PDFWe present a method for the determination of the average number of polymer molecules on the surface of A(II)B(VI) luminescent core-shell nanocrystals (CdSe/ZnS, ZnSe/ZnS quantum dots, and CdS/ZnS nanorods) encapsulated with amphiphilic polymer. Poly(maleic anhydride-alt-1-tetradecene) (PMAT) was quantitatively labeled with amino-derivative of fluorescein and the average amount of PMAT molecules per single nanocrystal was determined using optical absorption of the dye in the visible spectral range. The average amount of PMAT molecules grows linearly with the surface area of all studied nanocrystals.
View Article and Find Full Text PDF