Publications by authors named "Aliakbar Mohammadifar"

Soil erosion by wind poses a significant threat to various regions across the globe, such as drylands in the Middle East and Iran. Wind erosion hazard maps can assist in identifying the regions of highest wind erosion risk and are a valuable tool for the mitigation of its destructive consequences. This study aims to map wind erosion hazards by developing an interpretable (explainable) model based on machine learning (ML) and Shapley additive exPlanation (SHAP) interpretation techniques.

View Article and Find Full Text PDF
Article Synopsis
  • - This research presents a new method using deep learning and active learning to create accurate global maps of land susceptibility to wind erosion, employing models like RNN and GRU alongside various interpretation techniques.
  • - Thirteen environmental factors were analyzed, and through optimization, eight significant factors (such as wind speed and soil moisture) were selected to predict wind erosion risk.
  • - The findings show that the GRU-AL model was the most effective, categorizing global land into different levels of susceptibility, with significant insights into how factors like soil carbon and precipitation interact with erosion risk predictions.
View Article and Find Full Text PDF

Total suspended particulates (TSP), as a key pollutant, is a serious threat for air quality, climate, ecosystems and human health. Therefore, measurements, prediction and forecasting of TSP concentrations are necessary to mitigate their negative effects. This study applies the gated recurrent unit (GRU) deep learning model to predict TSP concentrations in Zabol, Iran, during the dust period of the 120-day wind (3 June - 4 October 2014).

View Article and Find Full Text PDF

Gully erosion possess a serious hazard to critical resources such as soil, water, and vegetation cover within watersheds. Therefore, spatial maps of gully erosion hazards can be instrumental in mitigating its negative consequences. Among the various methods used to explore and map gully erosion, advanced learning techniques, especially deep learning (DL) models, are highly capable of spatial mapping and can provide accurate predictions for generating spatial maps of gully erosion at different scales (e.

View Article and Find Full Text PDF

Flood risk assessment is a key step in flood management and mitigation, and flood risk maps provide a quantitative measure of flood risk. Therefore, integration of deep learning - an updated version of machine learning techniques - and multi-criteria decision making (MCDM) models can generate high-resolution flood risk maps. In this study, a novel integrated approach has been developed based on multiplicative long short-term memory (mLSTM) deep learning models and an MCDM ensemble model to map flood risk in the Minab-Shamil plain, southern Iran.

View Article and Find Full Text PDF

This contribution presents a novel methodology based on the feature selection, ensemble deep learning (EDL) models, and active learning (AL) approach for prediction of land subsidence (LS) hazard and rate, and its uncertainty in an area involving two important plains - the Minab and Shamil-Nian plains - in the Hormozgan province, southern Iran. The important features controlling LS hazard were identified by ridge regression. Then, two EDL models were constructed by stacking (SEDL) and voting (VEDL) five dense deep learning (DL) models (model 1 to model 5) for mapping LS hazard.

View Article and Find Full Text PDF

Dust storms have many negative consequences, and affect all kinds of ecosystems, as well as climate and weather conditions. Therefore, classification of dust storm sources into different susceptibility categories can help us mitigate its negative effects. This study aimed to classify the susceptibility of dust sources in the Middle East (ME) by developing two novel deep learning (DL) hybrid models based on the convolutional neural network-gated recurrent unit (CNN-GRU) model, and the dense layer deep learning-random forest (DLDL-RF) model.

View Article and Find Full Text PDF

This research introduces a new combined modelling approach for mapping soil salinity in the Minab plain in southern Iran. This study assessed the uncertainty (with 95% confidence limits) and interpretability of two deep learning (DL) models (deep boltzmann machine-DBM) and a one dimensional convolutional neural networks (1DCNN)-long short-term memory (LSTM) hybrid model (1DCNN-LSTM) for mapping soil salinity by applying DeepQuantreg and game theory (Shapely Additive exPlanations (SHAP) and permutation feature importance measure (PFIM)), respectively. Based on stepwise forward regression (SFR)-a technique for controlling factor selection, 18 of 47 potential controls were selected as effective factors.

View Article and Find Full Text PDF

Understanding the spatial distribution of soil salinity is required to conserve land against degradation and desertification. Against this background, this study is the first attempt to predict soil salinity in the Jaghin basin, in southern Iran, by applying and comparing the performance of four deep learning (DL) models (deep convolutional neural networks-DCNNs, dense connected deep neural networks-DenseDNNs, recurrent neural networks-long short-term memory-RNN-LSTM and recurrent neural networks-gated recurrent unit-RNN-GRU) and six shallow machine learning (ML) models (bagged classification and regression tree-BCART, cforest, cubist, quantile regression with LASSO penalty-QR-LASSO, ridge regression-RR and support vectore machine-SVM). To do this, 49 environmental landsat8-derived variables including digital elevation model (DEM)-extracted covariates, soil-salinity indices, and other variables (e.

View Article and Find Full Text PDF

Land susceptibility to wind erosion hazard in Isfahan province, Iran, was mapped by testing 16 advanced regression-based machine learning methods: Robust linear regression (RLR), Cforest, Non-convex penalized quantile regression (NCPQR), Neural network with feature extraction (NNFE), Monotone multi-layer perception neural network (MMLPNN), Ridge regression (RR), Boosting generalized linear model (BGLM), Negative binomial generalized linear model (NBGLM), Boosting generalized additive model (BGAM), Spline generalized additive model (SGAM), Spike and slab regression (SSR), Stochastic gradient boosting (SGB), support vector machine (SVM), Relevance vector machine (RVM) and the Cubist and Adaptive network-based fuzzy inference system (ANFIS). Thirteen factors controlling wind erosion were mapped, and multicollinearity among these factors was quantified using the tolerance coefficient (TC) and variance inflation factor (VIF). Model performance was assessed by RMSE, MAE, MBE, and a Taylor diagram using both training and validation datasets.

View Article and Find Full Text PDF

This research developed a more efficient integrated model (IM) based on combining the Nash-Sutcliffe efficiency coefficient (NSEC) and individual data mining (DM) algorithms for the spatial mapping of dust provenance in the Hamoun-e-Hirmand Basin, southeastern Iran. This region experiences severe wind erosion and includes the Sistan plain which is one of the most PM-polluted regions in the world. Due to a prolonged drought over the last two decades, the frequency of dust storms in the study area is increasing remarkably.

View Article and Find Full Text PDF