Due to environmental issues, production costs, and the low recycling capability of conventional epoxy polymers and their composites, many science groups have tried to develop a new type of epoxy polymers, which are compatible with the environment. Considering the precursors, these polymers can be produced from plant oils, saccharides, lignin, polyphenol, and natural resins. The appearance of these bio-polymers caused to introduce a new type of composites, namely bio-epoxy nanocomposites, which can be classified according to the synthesized bio-epoxy, the used nanomaterials, or both.
View Article and Find Full Text PDFOne of the encouraging processes to protect the environment is the catalytic conversion of NO and other harmful greenhouse gases. Employing heteroatom dopants into the Graphene structure for this conversion is an attractive technique owing to its relatively low price and the very low destructive impacts. DFT was applied to explore fundamental and principal reactions of NO adsorption and dissociation over the Silicon-embedded Graphene catalyst to contribute to the search for green catalysts in the conversion of toxic gases into less harmful ones.
View Article and Find Full Text PDF