This article develops a robust packetized predictive control framework to deal with the quantized-feedback control problem of networked systems subject to Markovian packet dropouts and input saturation. In the proposed framework, the Markov chain model of packet dropout is established from the link of the controller to the actuator. To deal with the quantized measurements, a robust packetized predictive control method is presented with a quantized-feedback law.
View Article and Find Full Text PDFThis work addresses the distributed consensus tracking problem for an extended class of high-order nonlinear multiagent networks with guaranteed performances over a directed graph. The adding one power integrator methodology is skillfully incorporated into the distributed protocol so as to tackle high powers in a distributed fashion. The distinguishing feature of the proposed design, besides guaranteeing closed-loop stability, is that some transient-state and steady-state metrics (e.
View Article and Find Full Text PDFIn this article, we generalize the results on self-synchronization of Lur'e networks diffusively interconnected through dynamic relative output-feedback from the undirected graph case in Zhang et al. 2016 to the general directed graph case. A linear dynamic self-synchronization protocol of the same structure is adopted as the one proposed in Zhang et al.
View Article and Find Full Text PDFThis paper aims to further increase the reliability of optimal results by setting the simulation conditions to be as close as possible to the real or actual operation to create a Cyber-Physical System (CPS) view for the installation of the Fractional-Order PID (FOPID) controller. For this purpose, we consider two different sources of variability in such a CPS control model. The first source refers to the changeability of a target of the control model (multiple setpoints) because of environmental noise factors and the second source refers to an anomaly in sensors that is raised in a feedback loop.
View Article and Find Full Text PDF