Publications by authors named "Ali Winters"

We performed a knowledge, attitudes, and practice (KAP) survey of bedside nurses to evaluate perceptions of antimicrobial use and aid in the design of nursing-based antimicrobial stewardship interventions. The survey highlighted discrepancies in knowledge and practice as well as opportunities to improve communication with nursing colleagues.

View Article and Find Full Text PDF

Clinical studies have identified widespread white matter degeneration in ischemic stroke patients. However, contemporary research in stroke has predominately focused on the infarct and periinfarct penumbra regions. The involvement of white matter degeneration after ischemic stroke and its contribution to post-stroke cognitive impairment and dementia (PSCID) has remained less explored in experimental models.

View Article and Find Full Text PDF

Glutamate-mediated excitotoxicity has been extensively explored as a therapeutic target for the development of potential treatments of neurological disorders including stroke. However, the effect of glutamate on astrocytes under pathological conditions has been less studied. Using primary astrocyte culture, we determined the effect of glutamate on astrocytes against ischemic insult.

View Article and Find Full Text PDF

Our surveys of nurses modeled after the Capability, Opportunity, and Motivation Model of Behavior (COM-B model) revealed that opportunity and motivation factors heavily influence urine-culture practices (behavior), in addition to knowledge (capability). Understanding these barriers is a critical step towards implementing targeted interventions to improving urine-culture practices.

View Article and Find Full Text PDF

Astrocytes play critical roles in regulating neuronal synaptogenesis, maintaining blood-brain barrier integrity, and recycling neurotransmitters. Increasing numbers of studies have suggested astrocyte heterogeneity in morphology, gene profile, and function. However, metabolic phenotype of astrocytes in different brain regions have not been explored.

View Article and Find Full Text PDF

Transient ischemic attack (TIA) presents a high risk for subsequent stroke, Alzheimer's disease (AD), and related dementia (ADRD). However, the neuropathophysiology of TIA has been rarely studied. By evaluating recurrent TIA-induced neuropathological changes, our study aimed to explore the potential mechanisms underlying the contribution of TIA to ADRD.

View Article and Find Full Text PDF

The brain is highly complex with diverse structural characteristics in accordance with specific functions. Accordingly, differences in regional function, cellular compositions, and active metabolic pathways may link to differences in glucose metabolism at different brain regions. In the current study, we optimized an acute biopsy punching method and characterized region-specific glucose metabolism of rat and mouse brain by a Seahorse XFe96 analyzer.

View Article and Find Full Text PDF

Background: The cerebellum's involvement in AD has been under-appreciated by historically labeling as a normal control in AD research.

Methods: We determined the involvement of the cerebellum in AD progression. Postmortem human and APPswe/PSEN1dE9 mice cerebellums were used to assess the cerebellar Purkinje cells (PC) by immunohistochemistry.

View Article and Find Full Text PDF

We determined that T-cell astrocyte interaction modulates interleukin-10 (IL-10) production from both cell types. The impact of IL-10 on astrocytes was compared to IL-10 generated from T-cell-astrocyte interactions in vitro. We demonstrated that T-cells directly interact with astrocytes to upregulate gene expression and secretion of IL-10, confirmed by elevated STAT3p/STAT3 expression in astrocytes.

View Article and Find Full Text PDF

Metformin, an anti-diabetes drug, has been recently emerging as a potential "anti-aging" intervention based on its reported beneficial actions against aging in preclinical studies. Nonetheless, very few metformin studies using mice have determined metformin concentrations and many effects of metformin have been observed in preclinical studies using doses/concentrations that were not relevant to therapeutic levels in human. We developed a liquid chromatography-tandem mass spectrometry protocol for metformin measurement in plasma, liver, brain, kidney, and muscle of mice.

View Article and Find Full Text PDF

Metformin is currently the most effective treatment for type-2 diabetes. The beneficial actions of metformin have been found even beyond diabetes management and it has been considered as one of the most promising drugs that could potentially slow down aging. Surprisingly, the effect of metformin on brain function and metabolism has been less explored given that brain almost exclusively uses glucose as substrate for energy metabolism.

View Article and Find Full Text PDF

Cholesterol sulfate (CS) is one of the most important known sterol sulfates in human plasma and it is present as a normal constituent in a variety of human tissues. In both the brain and periphery, CS serves as a substrate for the synthesis of sulfonated adrenal steroids such as pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate and as a constituent of many biological membranes including red blood cells where it functions as a stabilizing agent. It also acts as an endogenous regulator of cholesterol synthesis.

View Article and Find Full Text PDF

Background: Primary astrocyte cultures have been used for decades to study astrocyte functions in health and disease. The current primary astrocyte cultures are mostly maintained in serum-containing medium which produces astrocytes with a reactive phenotype as compared to in vivo quiescent astrocytes. The aim of this study was to establish a serum-free astrocyte culture medium that maintains primary astrocytes in a quiescent state.

View Article and Find Full Text PDF

Diabetes milieu is a complex metabolic disease that has been known to associate with high risk of various neurological disorders. Hyperglycemia in diabetes could dramatically increase neuronal glucose levels which leads to neuronal damage, a phenomenon referred to as glucose neurotoxicity. On the other hand, the impact of hyperglycemia on astrocytes has been less explored.

View Article and Find Full Text PDF

Artemisinin is an anti-malarial drug that has been in use for almost half century. Recently, novel biological effects of artemisinin on cancer, inflammation-related disorders and cardiovascular disease were reported. However, neuroprotective actions of artemisinin against glutamate-induced oxidative stress have not been investigated.

View Article and Find Full Text PDF

Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism.

View Article and Find Full Text PDF

Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC).

View Article and Find Full Text PDF

Forkhead box P3 (Foxp3)(+) regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the CNS under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ (+) CD4(+) Foxp3(+) T-cell population (cerebral Treg cells) in the rat cerebrum, constituting more than 15% of the cerebral CD4(+) T-cell compartment.

View Article and Find Full Text PDF

Mutations in the cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood.

View Article and Find Full Text PDF

Cadmium is a toxic metal with no biological function in higher-order mammals. Humans are exposed to cadmium environmental contamination and the mechanism underlying the cadmium's cytotoxicity is unclear. To better understand this mechanism, we employed murine hippocampal HT-22 cells to test the in vitro effects of cadmium toxicity.

View Article and Find Full Text PDF

Clinical application of recombinant tissue plasminogen activator (rtPA) for stroke is limited by hemorrhagic transformation, which narrows rtPA's therapeutic window. In addition, mounting evidence indicates that rtPA is potentially neurotoxic if it traverses a compromised blood brain barrier. Here, we demonstrated that pyruvate protects cultured HT22 neuronal and primary microvascular endothelial cells co-cultured with primary astrocytes from oxygen glucose deprivation (OGD)/reoxygenation stress and rtPA cytotoxicity.

View Article and Find Full Text PDF

Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), like most cancers, possesses a unique bioenergetic state of aerobic glycolysis known as the Warburg effect. Here, we documented that methylene blue (MB) reverses the Warburg effect evidenced by the increasing of oxygen consumption and reduction of lactate production in GBM cell lines. MB decreases GBM cell proliferation and halts the cell cycle in S phase.

View Article and Find Full Text PDF