Publications by authors named "Ali Tayyar"

The excessive dendritic development during the electrochemical evolution of the microstructures in rechargeable batteries can ultimately cause a short circuit, thermal instability, or runaway, and loss of active material. We initially develop a computational framework to quantify the bias of the electrodeposition on the roughened interface favoring the convex zones. Subsequently, we impose a countering temperature effect to enhance the diffusion on the trailing concave zones.

View Article and Find Full Text PDF

The dendritic growth in rechargeable batteries is one of the hurdles for the utilization of high energy-density elements, such as alkaline metals, as the electrode. Herein we explore the preventive role of the curved electrode surface in the cylindrical electrode design versus the flat geometry on the stochastic evolution of the dendritic crystals. In this regard we establish a coarse-grained Monte Carlo paradigm in the polar coordinates (r,θ), which runs in a larger scale of time and space (∼μs,∼nm ) than those of interionic collisions (∼fs, Å).

View Article and Find Full Text PDF