Publications by authors named "Ali Tamaddon"

The application of the amidohydrolase enzyme, L-asparaginase (ASNase), as a biocatalyst in the food and pharmaceutical industries has garnered significant interest. However, challenges such as hypersensitivity reactions, limited stability, and reusability under various operational conditions have hindered its cost-effective utilization. This paper introduces a novel nano-support for ASNase immobilization, namely the nanocomposite of iron oxide magnetic nanoparticles and amino acid-decorated graphene oxide (GO-Asp-FeO).

View Article and Find Full Text PDF

RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape.

View Article and Find Full Text PDF

The quest for scarless wound healing is imperative in healthcare, aiming to diminish the challenges of conventional wound treatment. Hyaluronic acid (HA), a key component of the skin's extracellular matrix, plays a pivotal role in wound healing and skin rejuvenation. Leveraging the advantages of HA hydrogels, this research focuses first on tuning the physicochemical and mechanical properties of photo-crosslinkable methacrylated HA (MAHA) by varying the methacrylation degree, polymer concentration, photo-crosslinker concentration, and UV exposure time.

View Article and Find Full Text PDF

Extensive efforts have been made to improve the understanding of hard tissue regeneration, essential for advancing medical applications like bone graft materials. However, the mechanisms of bone biomineralization, particularly the regulation of hydroxyapatite growth by proteins/peptides, remain debated. Small biomolecules such as amino acids are ideal for studying these mechanisms due to their simplicity and relevance as protein/peptide building blocks.

View Article and Find Full Text PDF

Delivering anticancer drugs to the appropriate site within the body poses a critical challenge in cancer treatment with chemotherapeutic agents like doxorubicin (DOX). Magnetic graphene oxide (GO) nanosheets with generation 1 (G1) amidoamine-dendronized crosslinks were developed by coupling cystamine-functionalized GO nanosheets with Fe3O4 nanoparticles modified with primary amine and methyl acrylate. These magnetic GO nanosheets were loaded with DOX to create a dual pH- and redox-responsive delivery system for cancer chemotherapy.

View Article and Find Full Text PDF

Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety.

View Article and Find Full Text PDF

Melanoma is known to be the most hazardous and life-threatening type of skin cancer. Although numerous treatments have been authorized in recent years, they often result in severe side effects and may not fully cure the disease. To combat this issue, immunotherapy has emerged as a promising approach for the prevention and treatment of melanoma.

View Article and Find Full Text PDF

Melanoma, a lethal form of skin cancer, poses a significant challenge in oncology due to its aggressive nature and high mortality rates. Gold nanostructures, including gold nanoparticles (GNPs), offer myriad opportunities in melanoma therapy and imaging due to their facile synthesis and functionalization, robust stability, tunable physicochemical and optical properties, and biocompatibility. This review explores the emerging role of gold nanostructures and their composites in revolutionizing melanoma treatment paradigms, bridging the gap between nanotechnology and clinical oncology, and offering insights for researchers, clinicians, and stakeholders.

View Article and Find Full Text PDF

Background: Recent advancements in mesenchymal stem cell (MSC) technology have paved the way for innovative treatment options for various diseases. These stem cells play a crucial role in tissue regeneration and repair, releasing local anti-inflammatory and healing signals. However, challenges such as homing issues and tumorigenicity have led to exploring MSC-exosomes as a promising alternative.

View Article and Find Full Text PDF

Immunoconjugates are promising molecules combining antibodies with different agents, such as toxins, drugs, radionuclides, or cytokines that primarily aim to target tumor cells. However, tumor microenvironment (TME), which comprises a complex network of various cells and molecular cues guiding tumor growth and progression, remains a major challenge for effective cancer therapy. Our review underscores the pivotal role of TME in cancer therapy with immunoconjugates, examining the intricate interactions with TME and recent advancements in TME-targeted immunoconjugates.

View Article and Find Full Text PDF

Objectives: Milk thistle has long been used in the treatment of liver and biliary disorders. In the present study, to make a long-acting delivery system for silibinin (SBN, a major active constituent of milk thistle seeds with antioxidant and hepatoprotective function), mesoporous silica composite nanoparticles (NC) were synthesized and coated with RBC membrane.

Methods: A modified Stöber method was used for NC synthesis, which was then characterized using FE-SEM, DLS, TEM, FTIR, and EDAX techniques.

View Article and Find Full Text PDF

Streptokinase has poor selectivity and provokes the immune response. In this study, we used studies to design a fusion protein to achieve targeted delivery to the thrombus. Streptokinase was analyzed computationally for mapping.

View Article and Find Full Text PDF

Spinal cord injury, traumatic brain injury, and neurosurgery procedures usually lead to neural tissue damage. Self-assembled peptide (SAP) hydrogels, a type of innovative hierarchical nanofiber-forming peptide sequences serving as hydrogelators, have emerged as a promising solution for repairing tissue defects and promoting neural tissue regeneration. SAPs possess numerous features, such as adaptable morphologies, biocompatibility, injectability, tunable mechanical stability, and mimicking of the native extracellular matrix.

View Article and Find Full Text PDF

Wound healing is one of the major global health concerns in diabetic patients. Simvastatin (SMV) is a poorly soluble oral cholesterol-lowering drug that may aid diabetic wound healing. In the current study, a thixotropic peptide hydrogel of Fmoc-diphenylalanine (FmocFF) containing SMV was designed to accelerate skin wound healing effectively and safely in diabetic mice.

View Article and Find Full Text PDF

The choice of capping agents used during the synthesis process of quantum dots (QDs) can significantly influence their fate and fundamental properties. Hence, choosing an appropriate capping agent is a critical step in both synthesis and biomedical application of QDs. In this research, ZnS QDs were synthesized via chemical precipitation process and three commonly employed capping agents, namely mercaptoethanol (ME), mercaptoacetic acid (MAA), and cysteamine (CA), were used to stabilize the QDs.

View Article and Find Full Text PDF

Systemic infections are routinely treated with amphotericin B (AMB), a highly effective antimycotic drug. However, due to severe toxicities linked to the parenteral administration of conventional micellar formulations (Fungizone®), its clinical utility is limited. Hyperbranched polyglycerols (HPGs) are multi-branched three-dimensional hydrophilic macromolecules that can be used to lessen the toxicity of AMB while also increasing its aqueous solubility.

View Article and Find Full Text PDF

Graphene and its derivatives have gained popularity due to their numerous applications in various fields, such as biomedicine. Recent reports have revealed the severe toxic effects of these nanomaterials on cells and organs. In general, the chemical composition and surface chemistry of nanomaterials affect their biocompatibility.

View Article and Find Full Text PDF

Functional, physicochemical, and rheological properties of protein-polysaccharide complexes are remarkably under the influence of the quality of solvent or cosolute in a food system. Here, a comprehensive description of the rheological properties and microstructural peculiarities of cress seed mucilage (CSM)-β-lactoglobulin (Blg) complexes are discussed in the presence of CaCl (2-10 mM), (CSM-Blg-Ca), and NaCl (10-100 mM) (CSM-Blg-Na). Our results on steady-flow and oscillatory measurements indicated that shear thinning properties can be fitted well by the Herschel-Bulkley model and by the formation of highly interconnected gel structures in the complexes, respectively.

View Article and Find Full Text PDF

L-asparaginase (ASNase) enzyme has limited therapeutic use due to its poor pharmacokinetics and immunogenicity. To overcome these obstacles, we immobilized ASNase in biocompatible poly hydroxypropyl methacrylamide (P(HPMA))-based nanogels simply formed through the host-guest inclusion complex of ASNase-conjugated random copolymer of HPMA and polyethylene glycol (PEG) acrylate (P(HPMA-MPEGA)) and α-cyclodextrin dimer (bisCD) using cystamine as a linker. The effects of bisCD and polymer concentrations on particle size, gelation time, and recovery of enzyme activity were investigated.

View Article and Find Full Text PDF

Recently, MicroRNAs have gained increasing popularity as a novel nucleic acid-mediated medicine to regulate cancer-related protein expression. MicroRNA-21 (miR-21) is known as an oncogenic microRNA which is overexpressed in almost all cancers, including ovarian carcinoma that causes cisplatin (cis-Pt) resistance and vascular endothelial growth factor (VEGF) upregulation. So, miRNA-based therapy can be regarded as knocking down miR-21 expression, inducing tumor cell apoptosis, and suppressing tumor-associated angiogenesis.

View Article and Find Full Text PDF

Poorly water-soluble drugs like sorafenib tosylate (SFB) can be made more soluble and orally bioavailable using a biocompatible hydrophilic matrix yields amorphous or microcrystalline drugs with high stability and low recrystallization risk. Mesoporous starch (MPS) due to its edibility, biodegradability, high surface area, and confined pores. In this study, MPS, either alone or in combination with polyvinylpyrrolidone (PVP), was employed for improving SFB oral bioavailability.

View Article and Find Full Text PDF

Although Amphotericin B (AMB) is considered the most effective anti-mycotic agent for treating Candida infections, its clinical use is limited due to its high toxicity. To address this issue, we developed cholesterol-based dendritic micelles of hyperbranched polyglycerol (HPG), including cholesterol-cored HPG (Chol-HPG) and cholesterol end-capped HPG (HPG@Chol), for AMB delivery. The findings suggested that the presence of cholesterol moieties could control AMB loading and release properties.

View Article and Find Full Text PDF

Background: Mesenchymal-based therapy has been utilized as a practical approach in the treatment of renal ischemia/reperfusion (I/R) injury. However, low cell retention and survival in the ischemic site have remained challenging issues. To bridge this gap, the integrin receptor-binding RGD peptide-functionalized, s-nitroso-n-acetyl penicillamine (SNAP)-loaded hydrogel was used to transplant Wharton's jelly-mesenchymal stem cells (WJ-MSCs).

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a leading cause of death worldwide. It arises from blood reflowing after tissue hypoxia induced by ischemia that causes severe damages due to the accumulation of reactive oxygen species and the activation of inflammatory responses. Exosomes are the smallest members of the extracellular vesicles' family, which originate from nearly all eukaryotic cells.

View Article and Find Full Text PDF

Drug conjugation with enzyme-sensitive peptides is one of the innovative smart delivery systems for cancer therapy. This delivery method has some advantages, such as lowering side effects and increasing treatment selectivity. Herein, two conjugates of doxorubicin and small peptide are designed that are sensitive to Cathepsin B, a tumor homing enzyme.

View Article and Find Full Text PDF