Time-resolved fluorescence imaging techniques, like confocal fluorescence lifetime imaging microscopy, are powerful photonic instrumentation tools of modern science with diverse applications, including: biology, medicine, and chemistry. However, complexities of the systems, both at specimen and device levels, cause difficulties in quantifying soft biomarkers. To address the problems, we first aim to understand and model the underlying photophysics of fluorescence decay curves.
View Article and Find Full Text PDFMethods Appl Fluoresc
February 2024
Many medical imaging modalities have benefited from recent advances in Machine Learning (ML), specifically in deep learning, such as neural networks. Computers can be trained to investigate and enhance medical imaging methods without using valuable human resources. In recent years, Fluorescence Lifetime Imaging (FLIm) has received increasing attention from the ML community.
View Article and Find Full Text PDFFluorescence lifetime imaging is a valuable technique for probing characteristics of wide ranging samples and sensing of the molecular environment. However, the desire to measure faster and reduce effects such as photo bleaching in optical photon-count measurements for lifetime estimation lead to inevitable effects of convolution with the instrument response functions and noise, causing a degradation of the lifetime accuracy and precision. To tackle the problem, this paper presents a robust and computationally efficient framework for recovering fluorophore sample decay from the histogram of photon-count arrivals modelled as a decaying single-exponential function.
View Article and Find Full Text PDF