IEEE J Biomed Health Inform
October 2024
Medical treatments often involve a sequence of decisions, each informed by previous outcomes. This process closely aligns with reinforcement learning (RL), a framework for optimizing sequential decisions to maximize cumulative rewards under unknown dynamics. While RL shows promise for creating data-driven treatment plans, its application in medical contexts is challenging due to the frequent need to use sparse rewards, primarily defined based on mortality outcomes.
View Article and Find Full Text PDFRepresentational similarity analysis (RSA) summarizes activity patterns for a set of experimental conditions into a matrix composed of pairwise comparisons between activity patterns. Two examples of such matrices are the condition-by-condition inner product and correlation matrix. These representational matrices reside on the manifold of positive semidefinite matrices, called the Riemannian manifold.
View Article and Find Full Text PDF