Publications by authors named "Ali Seyed Shirkhorshidi"

Similarity or distance measures are core components used by distance-based clustering algorithms to cluster similar data points into the same clusters, while dissimilar or distant data points are placed into different clusters. The performance of similarity measures is mostly addressed in two or three-dimensional spaces, beyond which, to the best of our knowledge, there is no empirical study that has revealed the behavior of similarity measures when dealing with high-dimensional datasets. To fill this gap, a technical framework is proposed in this study to analyze, compare and benchmark the influence of different similarity measures on the results of distance-based clustering algorithms.

View Article and Find Full Text PDF