Objectives: This study aims to use ultrasound derived features as biomarkers to assess the malignancy of thyroid nodules in patients who were candidates for FNA according to the ACR TI-RADS guidelines.
Methods: Two hundred and ten patients who met the selection criteria were enrolled in the study and subjected to ultrasound-guided FNA of thyroid nodules. Different radiomics features were extracted from sonographic images, including intensity, shape, and texture feature sets.
Objectives: We evaluate the feasibility of treatment response prediction using MRI-based pre-, post-, and delta-radiomic features for locally advanced rectal cancer (LARC) patients treated by neoadjuvant chemoradiation therapy (nCRT).
Materials And Methods: This retrospective study included 53 LARC patients divided into a training set (Center#1, n = 36) and external validation set (Center#2, n = 17). T2-weighted (T2W) MRI was acquired for all patients, 2 weeks before and 4 weeks after nCRT.
Objectives: The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning approach suitable for clinical diagnosis of COVID-19 patients.
Methods: In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as input/output as training, test, and external validation set, respectively, to implement the full-dose prediction technique. A residual convolutional neural network was applied to generate full-dose from ultra-low-dose CT images.