Deep neural networks have reached remarkable achievements in medical image processing tasks, specifically in classifying and detecting various diseases. However, when confronted with limited data, these networks face a critical vulnerability, often succumbing to overfitting by excessively memorizing the limited information available. This work addresses the challenge mentioned above by improving the supervised contrastive learning method leveraging both image-level labels and domain-specific augmentations to enhance model robustness.
View Article and Find Full Text PDF