In this article, the propagation of high-frequency (HF) plane electromagnetic waves through the lower ionosphere is numerically investigated using the real geometry of the Earth's magnetic field in the northern hemisphere. For this purpose, the profiles of electron density and the collision frequency in the layers of the lower ionosphere (D- and E-region) are considered using the reported experimental data for day and night. The reflection, transmission, and absorption coefficients of HF radio waves in the frequency range of 3 to 30 MHz are calculated in the ionosphere plasma.
View Article and Find Full Text PDFLarge-amplitude plasma wave is known to accelerate electrons to high energies. The electron energy gain mainly depends on plasma wave amplitude. In this paper, we investigate the excitation of large-amplitude plasma waves by laser beat-wave in an inhomogeneous plasma.
View Article and Find Full Text PDFA new scheme for injection and acceleration of electrons in wakefield accelerators is suggested based on the co-action of a laser pulse and an electron beam. This synergy leads to stronger wakefield generation and higher energy gain in the bubble regime. The strong deformation of the whole bubble leads to electron self-injection at lower laser powers and lower plasma densities.
View Article and Find Full Text PDFMetamaterials in which plasmas are included have significant properties that may not be found in ordinary metamaterials. The permittivity function of these engineered materials can be rapidly manipulated by applying external electric and magnetic field or changing the gas pressure, temperature, and collisional frequency. We investigate the conditions necessary for the existence of Dyakonov surface waves (DSWs) propagating along the interface of a plasma metamaterial (PMM) and an isotropic dielectric material in the terahertz region.
View Article and Find Full Text PDF