Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip.
View Article and Find Full Text PDFNeurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses.
View Article and Find Full Text PDFThe effect of diameter variation on electrical characteristics of long-channel InAs nanowire metal-oxide-semiconductor field-effect transistors is experimentally investigated. For a range of nanowire diameters, in which significant band gap changes are observed due to size quantization, the Schottky barrier heights between source/drain metal contacts and the semiconducting nanowire channel are extracted considering both thermionic emission and thermally assisted tunneling. Nanowires as small as 10 nm in diameter were used in device geometry in this context.
View Article and Find Full Text PDFNanostructures have attracted a great deal of attention because of their potential usefulness for high density applications. More importantly, they offer excellent avenues for improved scaling beyond conventional approaches. Less attention has been paid to their intrinsic potential for distinct circuit applications.
View Article and Find Full Text PDF