Publications by authors named "Ali Rahmatpour"

Aiming at dealing with organic and inorganic pollutants dissolved in aquatic environments, we introduce self-assembled fluorescent nanocomposite hydrogel based on a binary polysaccharide network (xanthan gum/chitosan) embedding nitrogen-doped carbon quantum dots not only as a hybrid solid optical sensor for detecting Cr(VI) ions but also to remove anionically charged contaminants Cr(VI) and methyl orange (MO) by acting as an adsorbent. This fluorescent nanocomposite achieved a detection limit of 0.29 μM when used to detect Cr(VI) and demonstrated a fluorescence quantum yield of 59.

View Article and Find Full Text PDF

This study aimed to fabricate a series of biodegradable hydrogel films by gelating/physically crosslinking a blend of xanthan gum (XG) and chitosan (CS) in various combinations using a facile, green, and low cost solution casting technique. The adsorption of Cd, Cu and Ni by the XG/CS biofilm in aqueous solution was studied in batch experiments to determine how the pH of the solution, contact time, dosage of adsorbent, initial metal ion concentration and ionic strength affect its adsorption. A highly pH-dependent adsorption process was observed for three metal ions.

View Article and Find Full Text PDF

This paper presents the rational design and novel synthesis of multifunctional nanocomposite hydrogel derived from xanthan gum (XG) modified with silica nanoparticles and partially hydrolyzed polyacrylamide (HPAM) via H-bonding interactions (self-assembly) through the "green" gelation process in water. Different techniques have been employed to characterize HPAM/SiO@XG, including FT-IR, FE-SEM, XRD, TEM, BET, and TG/DTG as well as swelling kinetics. Crystal violet (CV)'s adsorption performance was investigated using batch experiments by varying various variables involving adsorbent composition, pH, adsorbent quantity, contact time, CV concentration, ionic strength, and temperature.

View Article and Find Full Text PDF

In this contribution, a bio-nanocomposite hydrogel film (CS/XG.SiO) of chitosan/silica NPs-modified xanthan gum was prepared via a facile solution casting blending approach and utilized to capture the anionic methyl orange (MO) from aqueous solution. A Taguchi standard method was used to optimize the hydrogel nanocomposite synthesis reaction conditions after comprehensive characterization using various techniques.

View Article and Find Full Text PDF

Our objective in this study is to fabricate a novel chitosan-based ternary nanocomposite hydrogel film by incorporating graphene oxide (GO) nanosheets into a chitosan/partially hydrolyzed polyacrylamide (PHPA) network to boost adsorption efficiency through one step self-assembly process in water. Basically, H-bonding interactions drive the formation of a crosslinking network structure. The Batch adsorption experiments evaluated the hydrogel nanocomposite's MB adsorption performance.

View Article and Find Full Text PDF

A novel bio-based composite adsorbent, all biopolymer self-assembled hydrogel film has been prepared by eco-friendly amalgamating chitosan (CS) and carboxymethyl guar gum (CMGG) biopolymers in water without needing small molecules for cross-linking. Various analysis demonstrated the electrostatic interactions and hydrogen bondings within the network structure are responsible for gelling, crosslinking, and forming a 3D structure. Various experimental parameters were optimized to evaluate the CS/CMGG's potential for removing Cu ions from aqueous solution, including pH, dosage, Cu(II) initial concentration, contact time, and temperature.

View Article and Find Full Text PDF

Microplastic pollution is a serious threat to the biota and humans, and wastewater treatment plants act as a pathway for entering microplastics into the environment. This study discusses the identification and quantification of microplastics in the south of Tehran municipal WWTP. The sampling was repeated three times in a month, overall, nine times for water samples and once a month in total, three times for digested sludge samples by steel bucket with the WPO method.

View Article and Find Full Text PDF

Cross-linked polymer beads with different cross-linking agent loading were prepared by carrying out cross-linking suspension copolymerization of styrene-divinylbenzene (St- DVB) monomers using guar gum (GG) and xanthan gum (XG) from bioresources as eco-friendly suspension biopolymer stabilizers in the presence of non reactive diluents. The effects of GG and XG as suspension biostabilizers on the characteristics of the styrene copolymer beads were investigated regarding thermal properties, porosity characteristics, solvent swelling ratio, and surface morphologies using TGA, DSC, XRD, SEM, BET analyses. Spherical and regular beads with smooth surface were produced and the average particle size was in the range 170-290 μm (50-80 mesh size).

View Article and Find Full Text PDF