Publications by authors named "Ali Rahjouei"

The mammalian DNA replication timing (RT) program is crucial for the proper functioning and integrity of the genome. The best-known mechanism for controlling RT is the suppression of late origins of replication in heterochromatin by RIF1. Here, we report that in antigen-activated, hypermutating murine B lymphocytes, RIF1 binds predominantly to early-replicating active chromatin and promotes early replication, but plays a minor role in regulating replication origin activity, gene expression and genome organization in B cells.

View Article and Find Full Text PDF

RIF1 is a multifunctional protein that plays key roles in the regulation of DNA processing. During repair of DNA double-strand breaks (DSBs), RIF1 functions in the 53BP1-Shieldin pathway that inhibits resection of DNA ends to modulate the cellular decision on which repair pathway to engage. Under conditions of replication stress, RIF1 protects nascent DNA at stalled replication forks from degradation by the DNA2 nuclease.

View Article and Find Full Text PDF

The establishment of protective humoral immunity is dependent on the ability of mature B cells to undergo antibody gene diversification while adjusting to the physiological stressors induced by activation with the antigen. Mature B cells diversify their antibody genes by class switch recombination (CSR) and somatic hypermutation (SHM), which are both dependent on efficient induction of activation-induced cytidine deaminase (AID). Here, we identified PDGFA-associated protein 1 (Pdap1) as an essential regulator of cellular homeostasis in mature B cells.

View Article and Find Full Text PDF

Class switch recombination (CSR) is a DNA recombination reaction that diversifies the effector functions of antibodies. CSR occurs via the formation and non-homologous end joining (NHEJ) repair of programmed DNA double-strand breaks (DSBs) at the immunoglobulin heavy chain locus. The DNA repair factors 53BP1 and Rif1 promote NHEJ and CSR by protecting DSBs against resection.

View Article and Find Full Text PDF

The chromatin of naive embryonic stem cells (ESCs) has a largely open configuration, as evident by the lack of condensed heterochromatin and the hypomethylation of DNA. Several molecular mechanisms promoting this constellation were previously identified. Here we present evidence for an important epigenetic function of MAD2L2, a protein originally known for its role in DNA damage repair, and for its requirement in germ cell development.

View Article and Find Full Text PDF

The induction and maintenance of pluripotency requires the expression of several core factors at appropriate levels (Oct4, Sox2, Klf4, Prdm14). A subset of these proteins (Oct4, Sox2, Prdm14) also plays crucial roles for the establishment of primordial germ cells (PGCs). Here we demonstrate that the Mad2l2 (MAD2B, Rev7) gene product is not only required by PGCs, but also by pluripotent embryonic stem cells (ESCs), depending on the growth conditions.

View Article and Find Full Text PDF

Stem cell technology combined with nano-scaffold surfaces provides a new tool for better induction involved in cell lineage differentiations and therefore for central nervous system repair. This study was undertaken to investigate appropriate neural cell-substrate interactions. Neural progenitors (NPs) were established from human embryonic stem cells (hESCs), as a first step, using an adherent system and a defined medium supplemented with a combination of factors.

View Article and Find Full Text PDF