Publications by authors named "Ali Radhi"

This study aimed to investigate the potential neuroprotective effects of coenzyme Q10 in cerebral ischemia-reperfusion injury-induced neuronal damage and explore the underlying mechanisms. Twenty-eight adult male rats, weighing approximately 200-300 grams, were randomly divided into four groups: the sham group (neck dissection without ischemia), the control group (30 minutes of bilateral common carotid artery ligation followed by one hour of reperfusion), the vehicle group (oral carboxymethylcellulose solution for seven days prior to bilateral common carotid artery ligation and reperfusion), and the treatment group (seven days of coenzyme Q10 pretreatment followed by bilateral common carotid artery occlusion and reperfusion). Histopathological analysis and measurement of brain infarct size were performed, and cerebral levels of IL-6, IL-10, TNF-α, ICAM-1, NF-κB p65, and total antioxidant capacity were assessed.

View Article and Find Full Text PDF

Objective: The aim: To see whether nimodipine had neuroprotective effects in cerebral ischemia/reperfusion injury.

Patients And Methods: Materials and methods: A total of 28 adult male Sprauge-dawley rats weighting 200-300 g were distributed randomly into 4 groups (7 animals in each group): sham (neck dissection without bilateral common carotid artery occlusion), control (bilateral common carotid artery occlusion for 30 minutes and reperfusion for 1 hour), vehicle (7 days of daily carboxymethylcellulose by oral gavage followed by bilateral carotid artery occlusion and reperfusion), and nimodipine-treated rats (7 days of 3 mg/kg/day of oral Azelnidipine pretreatment then bilateral common carotid artery occlusion and reperfusion). Besides assessment of histological changes and brain infarct volume, the brain tissues were sectioned to estimate NF-κB p65, IL-6, IL-10, TNF-α, ICAM-1 and total anti-oxidant capacity.

View Article and Find Full Text PDF

This study was performed to evaluate the neuroprotective effect of Azelnidipine in cerebral ischemia/reperfusion and to envisage its mechanisms. Twenty-eight adult male Sprague-Dawley rats weighing 200-300 g were randomized into 4 groups (7 rats in each group). Sham (neck dissection without bilateral common carotid artery occlusion), control (30 minutes of bilateral common carotid artery occlusion and reperfusion for 1 hour), vehicle (identical volume of 0.

View Article and Find Full Text PDF

Introduction: Of recognized fact the importance of early diagnosis and early management of ST-elevation myocardial infarction, to regain a normal or at least adequate coronary flow in the Primary Percutaneous Intervention. Slow or no-reflow is suboptimal myocardial reperfusion, without angiographic evidence of mechanical obstruction. Adenosine, Verapamil and saline flush are manoeuvres proved useful.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) and piezoelectric generators (PGs) are generally considered the two most common approaches for harvesting ambient mechanical energy that is ubiquitous in our everyday life. The main difference between the two generators lies in their respective working frequency range. Despite the remarkable progress, there has been no quantitative studies on the operating frequency band of the two generators at frequency values below 4 Hz, typical of human motion.

View Article and Find Full Text PDF

Since their debut in 2012, triboelectric nanogenerators (TENGs) have attained high performance in terms of both energy density and instantaneous conversion, reaching up to 500 W m and 85%, respectively, synchronous with multiple energy sources and hybridized designs. Here, a comprehensive review of the design guidelines of TENGs, their performance, and their designs in the context of Internet of Things (IoT) applications is presented. The development stages of TENGs in large-scale self-powered systems and technological applications enabled by harvesting energy from water waves or wind energy sources are also reviewed.

View Article and Find Full Text PDF

Bio-inspired technologies have remarkable potential for energy harvesting from clean and sustainable energy sources. Inspired by the hummingbird-wing structure, we propose a shape-adaptive, lightweight triboelectric nanogenerator (TENG) designed to exploit the unique flutter mechanics of the hummingbird for small-scale wind energy harvesting. The flutter is confined between two surfaces for contact electrification upon oscillation.

View Article and Find Full Text PDF