This chapter describes the use of whole-body bioluminescent imaging (BLI) for the study of bacterial trafficking in live mice, with an emphasis on the use of bacteria in therapy of cancer. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumors following systemic administration. Bacteria engineered to express the lux gene cassette permit BLI detection of the bacteria and tumor sites concurrently.
View Article and Find Full Text PDFThis video describes the use of whole body bioluminesce imaging (BLI) for the study of bacterial trafficking in live mice, with an emphasis on the use of bacteria in gene and cell therapy for cancer. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumors following systemic administration. Bacteria engineered to express the lux gene cassette permit BLI detection of the bacteria and concurrently tumor sites.
View Article and Find Full Text PDFCitrobacter rodentium, which colonizes the gut mucosa via formation of attaching and effacing (A/E) lesions, causes transmissible colonic hyperplasia. The aim of this study was to evaluate whether prophylactic treatment with Bifidobacterium breve UCC2003 can improve the outcome of C. rodentium infection.
View Article and Find Full Text PDFThe ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux.
View Article and Find Full Text PDFBioluminescence imaging is a powerful technique to visualize and monitor biological processes in numerous systems. This unit describes two strategies for bioluminescence imaging that can be used to study bacterial infection in mice. One method is to express a luciferase gene in the bacteria; the second method is to use bacteria that express both a luciferase and β-lactamase along with a substrate containing caged luciferin, which is released by β-lactamase hydrolysis and reacts with luciferase to generate light.
View Article and Find Full Text PDFOptical imaging is emerging as a powerful tool to study physiological, neurological, oncological, cell biological, molecular, developmental, immunological, and infectious processes. This unit describes the use of fluorescent reporters for biological organisms, components, or events. We describe the application of fluorescence imaging to examination of infectious processes, in particular subcutaneous and pulmonary bacterial infections, but the same approaches are applicable to nearly any infectious route.
View Article and Find Full Text PDFThe infectious yeast Candida albicans is a model organism for understanding the mechanisms of fungal pathogenicity. We describe the functional expression of the firefly luciferase gene, a reporter commonly used to tag genes in many other cellular systems. Due to a non-standard codon usage by this yeast, the CUG codons were first mutated to UUG to allow functional expression.
View Article and Find Full Text PDF