Publications by authors named "Ali Partovinia"

The presence of cyclic organic compounds, including phenol, in the wastewater of many industries has made phenol removal an important issue. Meanwhile, the biological methods of removing phenol have attracted the attention of researchers in recent years. Recently, the use of immobilized microbial cells is proposed as a new approach in industrial wastewater treatment.

View Article and Find Full Text PDF

Among the various techniques used to clean up polluted environments, bioremediation is the most cost-effective and eco-friendly option. The diversity of microbial communities in a consortium can significantly affect the biodegradability of hazardous organic pollutants, particularly for in situ bioremediation processes. This is largely attributed to interactions between members of a consortium.

View Article and Find Full Text PDF

The release behavior of Lacticaseibacillus rhamnosus from single bilayer microcapsules of alginate-chitosan (AC) and its double bilayer (ACAC) was investigated in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Methods Multilayer polyelectrolyte AC microcapsules were fabricated using the layer-by-layer (LbL) self-assembly technique through electrostatic interactions. Results AC and ACAC microcapsules kept their integrity and mechanical stability in simulated gastric conditions.

View Article and Find Full Text PDF

Recently, slurry phase bioremediation as a simple and economical method is shown to be a successful technique for remediation of clayey soils. Besides, the use of microbial cell immobilization as a promising technique has drawn the attention of some researchers. The primary objective of this survey is to examine the synergistic adsorption and biodegradation performance of heavy crude oil by an isolated Bacillus licheniformis immobilized in a novel hybrid matrix (PUF/alginate/microbial cell) in aqueous phase.

View Article and Find Full Text PDF

Petroleum contamination of marine environments due to exploitation and accidental spills causes serious harm to ecosystems. Bioremediation with immobilized microorganisms is an environmentally friendly and cost-effective emerging technology for treating oil-polluted environments. In this study, Bacillus licheniformis was entrapped in Ca alginate beads using the electrospray technique for light crude oil biodegradation.

View Article and Find Full Text PDF

In this study, the optimum conditions for manufacturing particleboard-based waste cotton stalks were evaluated to achieve a good performance of mechanical properties. The response surface methodology (RSM) is used to calibrate the experiment results based on input variables consisting of the weight ratio of melamine formaldehyde to urea-formaldehyde (MU) resins, shelling ratio (SR), and the proportion of cotton particles to poplar particle (CP) in the core layer. An adaptive harmony search (AHS) algorithm is offered to search the optimum constructing conditions of mechanical properties for the composite particleboard using two optimization models.

View Article and Find Full Text PDF

Oil pollution is a serious international concern due to its harmful effect on human health and the environment. This study aims to investigate the effective factors on the biodegradation of Iranian heavy crude oil by Bacillus licheniformis. For this purpose, oil removal from the artificial seawater was studied by response surface methodology (RSM).

View Article and Find Full Text PDF

Background: Synthetic dye wastewater is a group of environmental pollutants that are widely used in some industries like textile, printing, dyeing and etc. Traditional treatment methods for wastewaters containing synthetic dyes are considered as expensive and time consuming approaches due to the chemical stability of these pollutants. Therefore, in recent years, biodegradation by means of capable microorganisms has been considered as an effective way to remove these pollutants.

View Article and Find Full Text PDF

Rice husk is an attractive bio-based adsorbent material for pollutant removal since it is one of the low-cost and renewable resources. The objective of this review is to give a summary of the key scientific features related to pollutants removal using rice husk, with a specific emphasis on the effect of factors on adsorption capacity of rice husk. According to the results, rice husk has the removal potential of various pollutants and it can be more used in the wastewater treatment.

View Article and Find Full Text PDF

Alginate spherical hydrogel beads have several applications in biomedical and biological processes in which the bead size and sphericity are critical factors affecting mass transfer phenomena. Electrospraying technology facilitates generation of small and almost uniform beads with higher diffusion rate resulting in process performance improvement. There are several key factors affecting particle size and shape behavior of electrosprayed alginate beads meanwhile interactions between these factors introduce complexity in determining appropriate conditions to produce spherical beads with the size of interest.

View Article and Find Full Text PDF

One of the foremost environmental issues having a key role in the feasibility study of polycyclic aromatic hydrocarbons (PAHs) biodegradation is the concern of the toxicity of the formed intermediate metabolites. In this study, biodegradability of phenanthrene (PHE) at initial concentrations of 100-500 ppm and its hydroxylated intermediate metabolites (IMs) in aqueous phase were investigated using free cells (FC) and immobilized cells (IC) in polyvinyl alcohol (PVA) cryogel beads. Results showed that both FC and IC systems were capable of complete PHE biodegradation at initial concentrations lower than 250 ppm after 7 days, though IC system showed a higher PHE removal rate.

View Article and Find Full Text PDF

Clayey soils contaminated with organic pollutants are nowadays one of the important environmental issues as they are highly reluctant to conventional bioremediation techniques. In this study, biodegradability of n-hexadecane as a model contaminant in oil polluted clayey soil by an indigenous bacterium was investigated. Maximal bacterial growth was achieved at 8% (v/v) n-hexadecane as sole carbon and energy sources in aqueous phase.

View Article and Find Full Text PDF