The recently developed optoacoustic tomography systems have attained volumetric frame rates exceeding 100 Hz, thus opening up new venues for studying previously invisible biological dynamics. Further gains in temporal resolution can potentially be achieved via partial data acquisition, though a priori knowledge on the acquired data is essential for rendering accurate reconstructions using compressed sensing approaches. In this work, we suggest a machine learning method based on principal component analysis for high-frame-rate volumetric cardiac imaging using only a few tomographic optoacoustic projections.
View Article and Find Full Text PDF