DNA polymerases are critical tools for a large number of emerging applications in biotechnology, but oftentimes polymerases with desired functions are not readily available. Directed evolution provides a possible solution to this problem by enabling the creation of engineered polymerases that are better equipped to recognize a given unnatural substrate. Here we report a microfluidic-based method for evolving new polymerase functions that involves ultrahigh throughput sorting of fluorescent water-in-oil (w/o) microdroplets.
View Article and Find Full Text PDFDNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates.
View Article and Find Full Text PDFMost DNA polymerase libraries sample unknown portions of mutational space and are constrained by the limitations of random mutagenesis. Here we describe a programmed allelic mutagenesis (PAM) strategy to comprehensively evaluate all possible single-point mutations in the entire catalytic domain of a replicative DNA polymerase. By applying the PAM strategy with ultrafast high-throughput screening, we show how DNA polymerases can be mapped for allelic mutations that exhibit enhanced activity for unnatural nucleic acid substrates.
View Article and Find Full Text PDFSynthetic biology aims to improve human health and the environment by repurposing biological enzymes for use in practical applications. However, natural enzymes often function with suboptimal activity when engineered into biological pathways or challenged to recognize unnatural substrates. Overcoming this problem requires efficient directed evolution methods for discovering new enzyme variants that function with a desired activity.
View Article and Find Full Text PDFEngineering polymerases to synthesize artificial genetic polymers with unique backbone structures is limited by a general lack of understanding about the structural determinants that govern substrate specificity. Here, we report a high-throughput microfluidic-based approach for mapping sequence-function relationships that combines droplet-based optical polymerase sorting with deep mutational scanning. We applied this strategy to map the finger subdomain of a replicative DNA polymerase isolated from Thermococcus kodakarensis (Kod).
View Article and Find Full Text PDFThe isolation of synthetic genetic polymers (XNAs) with catalytic activity demonstrates that catalysis is not limited to natural biopolymers, but it remains unknown whether such systems can achieve robust catalysis with Michaelis-Menten kinetics. Here, we describe an efficient RNA-cleaving 2'-fluoroarabino nucleic acid enzyme (FANAzyme) that functions with a rate enhancement of >10-fold over the uncatalyzed reaction and exhibits substrate saturation kinetics typical of most natural enzymes. The FANAzyme was generated by in vitro evolution using natural polymerases that were found to recognize FANA substrates with high fidelity.
View Article and Find Full Text PDFDarwinian evolution experiments carried out on xeno-nucleic acid (XNA) polymers require engineered polymerases that can faithfully and efficiently copy genetic information back and forth between DNA and XNA. However, current XNA polymerases function with inferior activity relative to their natural counterparts. Here, we report five X-ray crystal structures that illustrate the pathway by which α-(L)-threofuranosyl nucleic acid (TNA) triphosphates are selected and extended in a template-dependent manner using a laboratory-evolved polymerase known as Kod-RI.
View Article and Find Full Text PDFEngineered polymerases that can copy genetic information between DNA and xeno-nucleic acids (XNA) hold tremendous value as reagents in future biotechnology applications. However, current XNA polymerases function with inferior activity relative to their natural counterparts, indicating that current polymerase engineering efforts would benefit from new benchmarking assays. Here, we describe a highly parallel, low-cost method for measuring the average rate and substrate specificity of XNA polymerases in a standard qPCR instrument.
View Article and Find Full Text PDFCurr Protoc Nucleic Acid Chem
June 2017
Polymerase engineering is making it possible to synthesize xeno-nucleic acid polymers (XNAs) with diverse backbone structures and chemical functionality. The ability to copy genetic information back and forth between DNA and XNA has led to a new field of science known as synthetic genetics, which aims to study the genetic concepts of heredity and evolution in artificial genetic polymers. Since many of the polymerases needed to synthesize XNA polymers are not available commercially, researchers must express and purify these enzymes as recombinant proteins from E.
View Article and Find Full Text PDFNext-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest.
View Article and Find Full Text PDF