Publications by authors named "Ali Neshasteh-Riz"

Background: High-dose radiation altering the genetic material in patients' bone marrow cells can lead to hematopoietic radiation syndrome. Accordingly, the presence of radiation protections agents is critical to preventing these adverse effects.

Objective: This study aimed to evaluate the radioprotection of the exclusive or combination effect of resveratrol and crocin extracts at various concentrations on irradiated human lymphocytes.

View Article and Find Full Text PDF

The objective of this work was to review comparisons of the efficacy of Ga-PSMA-11 (prostate-specific membrane antigen) PET/CT and multiparametric magnetic resonance imaging (mpMRI) in the detection of prostate cancer among patients undergoing initial staging prior to radical prostatectomy or experiencing recurrent prostate cancer, based on histopathological data. A comprehensive search was conducted in PubMed and Web of Science, and relevant articles were analyzed with various parameters, including year of publication, study design, patient count, age, PSA (prostate-specific antigen) value, Gleason score, standardized uptake value (SUV), detection rate, treatment history, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and PI-RADS (prostate imaging reporting and data system) scores. Only studies directly comparing PSMA-PET and mpMRI were considered, while those examining combined accuracy or focusing on either modality alone were excluded.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes motor deficits, urinary incontinence, and neuropathic pain. This study was designed to optimize a photobiomodulation therapy (PBMT) protocol using a continuous wave (CW) 660 nm laser in rats with SCI. Specifically, the number of days of irradiation and the daily dose of PBMT were investigated.

View Article and Find Full Text PDF

Background: Melanoma is categorized as one of the most malignant, severe, and lethal cancers of the skin. Regarding the lack of efficiency of conventional therapies for most patients, novel therapeutic strategies are strongly required.

Objective: The current study aimed to assess the impact of AZD6738- an ATR kinase inhibitor- in combination with 6 MV X-ray on the human melanoma cell line (A375).

View Article and Find Full Text PDF

Photobiomodulation therapy (PBMT) previously known as low-level laser therapy (LLLT) has been used for over 30 years, to treat neurological diseases. Low-powered lasers are commonly used for clinical applications, although recently LEDs have become popular. Due to the growing application of this type of laser in brain and neural-related diseases, this review focuses on the mechanisms of laser action.

View Article and Find Full Text PDF

Objective: Glioblastoma (GBM) is one of the devastating types of primary brain tumors with a negligible response to standard therapy. Repurposing drugs, such as disulfiram (DSF) and metformin (Met) have shown antitumor properties in different cell lines, including GBM. In the present study, we focused on the combinatory effect of Met and DSF-Cu on the induction of apoptosis in U87-MG cells exposed to 6-MV X-ray beams.

View Article and Find Full Text PDF

In this study, we evaluated the effect of gallium phthalocyanine chloride (GaPcCl) as a radio- and photosensitizer on MCF-7 breast cancer cell line. We incubated cells with GaPcCl in different concentrations (from 3.125 to 100 μg/ml).

View Article and Find Full Text PDF

Objective: Melanoma is the most malignant and severe type of skin cancer. It is a tumor with a high risk of metastasis and resistant to conventional treatment methods (surgery, radiotherapy, and chemotherapy). β-elemene is the most active constituent of Curcuma wenyujin which is a non-cytotoxic antitumor drug, proved to be effective in different types of cancers.

View Article and Find Full Text PDF

Nowadays, gold nanoshells are used in targeted nano photothermal cancer therapy. This study surveyed the application of gold nanoshell (GNs) to thermal ablative therapy for melanoma cancer cells and it takes advantage of the near infrared absorption of gold nanoshells. The synthesis and characterization of glycosylated gold nanoshells (GGNs) were done.

View Article and Find Full Text PDF

Nowadays, there is growing interest regarding the use of metal Nanoshells as targeted agents of Nano-photo thermal cancer therapy. This study was aimed at synthesis the folic acid (FA)-conjugated with silica @gold core-shell nanoparticles (FA-SiO@AuNPs) for improving the treatment of melanoma cancer cells. The characterization data showed that the FA-SiO@AuNPs is spherical in shape and its size is ∼73.

View Article and Find Full Text PDF

Purpose: Glioblastoma multiform (GBM) is one of the most common brain tumors. Surgery, radiation therapy, hyperthermia, and chemotherapy are the most common treatments for brain tumors such as GBM. This study investigated the cytogenetic damage caused by hyperthermia, radiation (6 MV-X-rays), and topotecan in glioma spheroids, simultaneously and separately.

View Article and Find Full Text PDF

Cabazitaxel is a second-generation semisynthetic taxane. The recognized anti-neoplastic effect of Cabazitaxel is cell cycle perturbation by inducing arrest at G2/M. Since glioblastoma tumors have a relatively high expression of P-gp, it is encouraging to find a treatment that is effective against these tumors.

View Article and Find Full Text PDF

Radiotherapy is one of the modalities in the treatment of glioblastoma patients, but glioma tumors are resistant to radiation and also chemotherapy drugs. Thus, researchers are investigating drugs which have radiosensitization capabilities in order to improve radiotherapy. PARP enzymes and topoisomerase I enzymes have a critical role in repairing DNA damage in tumor cells.

View Article and Find Full Text PDF

Objective: To explore the cumulative genotoxic damage to glioblastoma (GBM) cells, grown as multicellular spheroids, following exposure to 6 MV X-rays (2 Gy, 22 Gy) with or without, 2- methoxy estradiol (2ME2), iododeoxyuridine (IUDR) or topotecan (TPT), using the Picogreen assay.

Materials And Methods: The U87MG cells cultured as spheroids were treated with 6 MV X-ray using linear accelerator. Specimens were divided into five groups and irradiated using X-ray giving the dose of 2 Gy after sequentially incubated with one of the following three drug combinations: TPT, 2-ME2/TPT, IUDR/TPT or 2ME2/IUDR/ TPT.

View Article and Find Full Text PDF

Objective: Glioblastoma multiforme (GBM), one of the most common and aggressive malignant brain tumors, is highly resistant to radiotherapy. Numerous approaches have been pursued to find new radiosensitizers. We used a picogreen and colonogenic assay to appraise the DNA damage and cell death in a spheroid culture of GBM cells caused by iodine-131 (I-131) beta radiation in the presence of topotecan (TPT).

View Article and Find Full Text PDF

Objective: In radiation treatment, the irradiation which is effective enough to control the tumors far exceeds normal-tissues tolerance. Thus to avoid such unfavourable outcomes, some methods sensitizing the tumor cells to radiation are used. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue that known to be effective as a radiosensitizer in human cancer therapy.

View Article and Find Full Text PDF

Objective: To assess relative biological effectiveness (RBE) of (131)I radiation relative to (60)Co gamma rays in glioblastoma spheroid cells.

Materials And Methods: : In this experimental study, glioblastoma spheroid cells were exposed to (131)I radiation and (60)Co gamma rays. Radiation induced DNA damage was evaluated by alkaline comet assay.

View Article and Find Full Text PDF

Objective: The passage of ionizing radiation in living cells creates clusters of damaged nucleotides in DNA. In this study, DNA strand breaks induced by the beta particle of iodine-131 (I-131), have been determined experimentally and compared to Monte Carlo simulation results as a theoretical method of determining(131)I damage.

Materials And Methods: In this experimental study, in order to create single strand breaks (SSB) and double strand breaks (DSB) in the DNA, glioblastoma (GBM) cells were exposed to 10 mCi I-131, at a dose of 2 Gy.

View Article and Find Full Text PDF

Objective: In this study, we investigated the combined effect of 2-Methoxyestradiol (2ME2) and (60)Co on the cytogenetic damage of iododeoxyuridine (IUdR) in the spheroid model of U87MG glioblastoma cancer cell lines by alkaline comet assay.

Materials And Methods: U87MG cells were cultured as spheroids with diameters of 350 µm. As control, the spheroids of one plate were not treated.

View Article and Find Full Text PDF

Heat shock protein 70 (Hsp70), a protein induced in cells exposed to sublethal heat shock, is present in all living cells and has been highly conserved during evolution. The aim of the current study was to determine the role of heat shock proteins in the resistance of prostate carcinoma cell line spheroids to hyperthermia. In vitro, the expression of Hsp70 by the DU 145 cell line, when cultured as monolayer or multicellular spheroids, was studied using Western blotting and enzyme-linked immunosorbent assay methods.

View Article and Find Full Text PDF