Diuron, a highly used herbicide worldwide, is metabolized into several toxic metabolites. DCA (3,4-dichloroaniline), DCPU [3-(3, 4-dichlorophenyl)urea] and DCPMU [3-(3,4-dichlorophenyl)-1-methyl urea] reduced viability of human placental choriocarcinoma BeWo, human breast adenocarcinoma MCF-7 and human colon adenocarcinoma Caco-2 cells as judged by the MTT assay, where color formation is dependent on functional mitochondria in viable cells. Based on the IC values in BeWo cells the order of cytotoxicity was DCA > DCPU > diuron > DCPMU, and in Caco-2 cells DCPMU > DCPU > DCA, diuron.
View Article and Find Full Text PDFIn addition to the transfer across the placenta, placenta displays hormonal and xenobiotic metabolism, as well as enzymatic defense against oxidative stress. We analyzed aromatase (CYP19A1), uridine 5'-diphospho-glucuronyltransferase (UGT), glutathione-S-transferase (GST) and catalase (CAT) activities in over 70 placentas from nonsmokers stored at -80 °C from former perfusion studies. A wide interindividual variation in all activities was found.
View Article and Find Full Text PDFDiuron is a broad-spectrum phenylurea derived herbicide which is commonly used across the globe. Diuron is toxic to the reproductive system of animals and carcinogenic to rat urothelium, and recently found to be genotoxic in human cells. In in vivo, it is metabolized predominately into 3-(3,4-dichlorophenyl)-1-methyl urea (DCPMU) in humans and 3-(3, 4-dichlorophenyl)urea (DCPU) in animals.
View Article and Find Full Text PDF