Understanding the underlying molecular mechanisms involved in epilepsy is critical for the development of more effective therapies. It is believed that mTOR (Mechanistic Target of Rapamycin kinases) activity and the mitochondrial dynamic balance change during epilepsy. mTOR affects mitochondrial fission by stimulating the translation of mitochondrial fission process 1 (MTFP1).
View Article and Find Full Text PDFTemporal lobe epilepsy (TLE) is the most prevalent and drug-resistant form of parietal epilepsy. TLE is accompanied by neuroinflammation in the brain, which involves reactive glial cells. Metformin is an old antidiabetic drug with anti-inflammatory and neuroprotective effects.
View Article and Find Full Text PDFAims: Understanding the underlying molecular mechanisms involved in epileptogenesis is necessary to target the best therapeutic interventions in epilepsy. Recently, it has been postulated that metformin, an old antidiabetic oral drug, has anti-seizure properties mostly due to its antioxidant activities. This study was designed to evaluate the ameliorative effects of metformin on the progression of epilepsy in the temporal lobe epilepsy model in rats.
View Article and Find Full Text PDFTemporal lobe epilepsy leads to a disturbance in the function and dynamic of the mitochondria. The mitoKATP channel is an important factor in controlling mitochondrial function. In this study, the protective role of mitoKATP was studied in temporal lobe epilepsy through the regulation of mitochondrial dynamic proteins.
View Article and Find Full Text PDFAcute liver failure (ALF) is a deadly clinical syndrome, which leads to a rapid loss of normal liver function. Diosgenin is a natural steroidal sapogenin found in various plant families. Various studies have shown that diosgenin have therapeutic or preventive effect in various diseases such as cancer, cardiovascular disorders, type 2 diabetes, and neurodegenerative disorders.
View Article and Find Full Text PDFInflammation is an important factor in the pathology of epilepsy with the hallmarks of resident microglia activation and infiltration of circulating monocytes in the damaged area. In the case of recovery and tissue repair, some monocytes change to macrophages (mo-MΦ) to enhance tissue repair. 2-deoxyglucose (2DG) is an analog of glucose capable of protecting the brain, and progranulin is a neurotrophic factor produced mainly by microglia and has an inflammation modulator effect.
View Article and Find Full Text PDF