Atherosclerosis, cholesterol-driven plaque formation in arteries, is a complex multicellular disease which is a leading cause of vascular diseases. During the progression of atherosclerosis, the autophagic function is impaired, resulting in lipid accumulation-mediated foam cell formation. The stimulation of autophagy is crucial for the recovery of cellular recycling process.
View Article and Find Full Text PDFIn recent years, trehalose, a natural disaccharide, has attracted growing attention because of the discovery of its potential to induce autophagy. Trehalose has also been demonstrated to preserve the protein's structural integrity and to limit the aggregation of pathologically misfolded proteins. Both of these properties have made trehalose a promising therapeutic candidate to target autophagy-related disorders and protein aggregation diseases.
View Article and Find Full Text PDFHsp70 molecular chaperones are essential components for maintaining protein homeostasis within cells. They interact with substrate or client proteins in a well characterised fashion that is regulated by ATP and supported by co-chaperones. In eukaryotes there is a vast array of Hsp70 isoforms that may facilitate adaption to a particular cellular compartment and distinct biological role.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have great therapeutic potential; however, their delivery still faces huge challenges, especially given the short half-life of naked miRNAs due to rapid hydrolysis or inactivation by abundant nucleases in the systemic circulation. Therefore, the search for reliable miRNA delivery systems is crucial. Nanogels are one of the more effective nanocarriers because they are biocompatible and have a high drug-loading capacity.
View Article and Find Full Text PDFDiabetes is a chronic disease caused by an imbalance of insulin release to the bloodstream in response to excessive glucose influx, which causes hyperglycemia. White saffron ( Val.), an Indonesian aromatic spice, contains essential phytochemicals and has a number of potential health benefits.
View Article and Find Full Text PDFThe use of smart nanocarriers that can modulate therapeutic release aided by biological cues can prevent undesirable cytotoxicity caused by the premature release of cytotoxic drugs during nanocarrier circulation. In this report, degradable nanocarriers based on pH/reduction dual-responsive nanogels were synthesized to encapsulate doxorubicin hydrochloride (DOX) and specifically boost the release of DOX in conditions characteristic of the cancer microenvironment. Nanogels containing anionic monomer 2-carboxyethyl acrylate (CEA) and '-bis(acryloyl)cystamine (CBA) as a degradable crosslinker have been successfully synthesized via photoinitiated free radical polymerization.
View Article and Find Full Text PDFTrehalose has been widely studied as a treatment for a variety of human disorders due to its ability to stimulate autophagy. Trehalose, however, is poorly adsorbed and is hydrolyzed in the intestinal mucosa, and oral delivery requires relatively high doses to induce autophagy. The parenteral injection of trehalose-releasing nanogels proposed in this study offers an alternative mode of delivery.
View Article and Find Full Text PDFBackground: Intimal hyperplasia caused by vascular injury is an important pathological process of many vascular diseases, especially occlusive vascular disease. In recent years, Nano-drug delivery system has attracted a wide attention as a novel treatment strategy, but there are still some challenges such as high clearance rate and insufficient targeting.
Results: In this study, we report a biomimetic ROS-responsive MM@PCM/RAP nanoparticle coated with macrophage membrane.
The development of nanomedicines provides new opportunities for the treatment of atherosclerosis (AS) due to their great advantages such as the improved drug solubility, enhanced bioavailability and reduced side effects. Despite these advantages, nanomedicines are still facing some challenges. The problems remain in the short circulation life, lack of specific targeting and poor drug release controllability.
View Article and Find Full Text PDFLung and bladder cancers are mostly incurable because of the early development of drug resistance and metastatic dissemination. Hence, improved therapies that tackle these two processes are urgently needed to improve clinical outcome. We have identified RSK4 as a promoter of drug resistance and metastasis in lung and bladder cancer cells.
View Article and Find Full Text PDFBiological stimuli that are present during the pathogenesis of disease have gained considerable interest as a critical element for the design of smart drug delivery systems. Recently, the utilization of biological stimuli-responsive (bioresponsive) nanotheranostic agents to treat atherosclerosis and ischemic-related diseases has demonstrated significant outcomes in preclinical studies. Those diseases share similar hallmarks, including high levels of endogenous reactive oxygen species (ROS), low pH, and high enzyme activity.
View Article and Find Full Text PDFAtherosclerosis (AS), the underlying cause of most cardiovascular events, is one of the most common causes of human morbidity and mortality worldwide due to the lack of an efficient strategy for targeted therapy. In this work, we aimed to develop an ideal biomimetic nanoparticle for targeted AS therapy. Based on macrophage "homing" into atherosclerotic lesions and cell membrane coating nanotechnology, biomimetic nanoparticles (MM/RAPNPs) were fabricated with a macrophage membrane (MM) coating on the surface of rapamycin-loaded poly (lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (RAPNPs).
View Article and Find Full Text PDFBackground: There would be over 600 million people living with diabetes by 2040 as predicted by the World Health Organization. Diabetes is characterized by raised blood sugar and insulin resistance. Insulin regulates the influx of glucose into the cell by upregulating the glucose transporter type 4 (GLUT4) expression on the plasma membrane.
View Article and Find Full Text PDFBacterial biofilms caused by antibiotic resistance are a severe cause of infection threatening human health nowadays. The primary causes of this emerging threat are poor penetration of conventional antibiotics and the growing number of varied strains of resistant bacteria. Recently, bulk phytochemical oils have been widely explored for their potential as antibacterial agents.
View Article and Find Full Text PDFOxidative stress, the disrupted oxidation-reduction mechanism in our body, is caused by the excessive exposure of free radicals and the impaired antioxidant defenses that can accelerate skin aging. Antioxidants can be obtained from nature, which are available widely in therapeutic-rich plants, such as white saffron ( Val., denoted as ).
View Article and Find Full Text PDFBiomater Sci
September 2020
Atherosclerosis is the most prevalent cause of cardiovascular disease-induced deaths worldwide. Micro- and nano-bubbles (MNBs) have been developed as the vehicles for detection, investigation, and drug delivery, specifically targeting atherosclerotic sites. MNBs have been clinically applied and commercialized as contrast agents because they typically respond to ultrasound for guiding and stimulating imaging.
View Article and Find Full Text PDFHsp70 chaperones interact with substrate proteins in a coordinated fashion that is regulated by nucleotides and enhanced by assisting cochaperones. There are numerous homologues and isoforms of Hsp70 that participate in a wide variety of cellular functions. This diversity can facilitate adaption or specialization based on particular biological activity and location within the cell.
View Article and Find Full Text PDFThis research focused on studying the effects of orally administered pressure-blanched white saffron on the antioxidative properties and lipid profiles of wistar rats. White saffron was blanched in autoclave for 2.5, 5, 7.
View Article and Find Full Text PDFNanoplatforms have been used extensively as advanced carriers to enhance the effectiveness of drug delivery, mostly through passive aggregation provided by the enhanced permeability and retention effect. Mechanical stimuli provide a robust strategy to bolster drug delivery performance by increasing the accumulation of nanoplatforms at the lesion sites, facilitating on-demand cargo release and providing theranostic aims. In this review, we focus on recent advances of mechanoresponsive nanoplatforms that can accomplish targeted drug delivery, and subsequent drug release, under specific stimuli, either endogenous (shear stress) or exogenous (magnetic field and ultrasound), to synergistically combat atherosclerosis at the molecular level.
View Article and Find Full Text PDFNat Struct Mol Biol
November 2019
BiP is a major endoplasmic reticulum (ER) chaperone and is suggested to act as primary sensor in the activation of the unfolded protein response (UPR). How BiP operates as a molecular chaperone and as an ER stress sensor is unknown. Here, by reconstituting components of human UPR, ER stress and BiP chaperone systems, we discover that the interaction of BiP with the luminal domains of UPR proteins IRE1 and PERK switch BiP from its chaperone cycle into an ER stress sensor cycle by preventing the binding of its co-chaperones, with loss of ATPase stimulation.
View Article and Find Full Text PDFNanomedicine has shown remarkable progress in preclinical studies of tumor treatment. Over the past decade, scientists have developed various nanocarriers (NCs) for delivering drugs into the tumor area. However, the average amount of accumulated drugs in tumor sites is far from satisfactory.
View Article and Find Full Text PDFAtherosclerosis is the root of approximately one-third of global mortalities. Nanotechnology exhibits splendid prospects to combat atherosclerosis at the molecular level by engineering smart nanoagents with versatile functionalizations. Significant advances in nanoengineering enable nanoagents to autonomously navigate in the bloodstream, escape from biological barriers, and assemble with their nanocohort at the targeted lesion.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress.
View Article and Find Full Text PDFThe development of the tumor-targeting ability of nanocarriers is of paramount importance for gene delivery into tumor lesions as well as to avoid biotoxicity. Here we report the synthesis of the polyethyleneimine-fluorescein isothiocyanate-folic acid (PEI-FITC-FA) polymer, which could condense the tumor suppressor pp53 to form nanocomplexes. These targeted nanocomplexes exhibited favorable physical properties including a small size of <100 nm, exploiting the enhanced permeability and retention effect and tumor-targeting ability by binding to the overexpressed FA receptors on tumor cell surfaces.
View Article and Find Full Text PDF