The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress.
View Article and Find Full Text PDFUnlabelled: Near isogenic F (NIF) population frequently developed by conventional backcross has dramatically contributed to QTL identification in plants. Developing such a NIF population is time-consuming. Thus, it is urgent to rapidly produce a NIF population for QTL cloning.
View Article and Find Full Text PDFIn recent years, much attention has been directed toward using nanoparticles (NPs) as one of the most effective strategies to improve plant growth, especially under salt stress conditions. Further research has been conducted to develop NPs using various chemical ways; accordingly, knowledge about the beneficial effect of bioSeNPs in rapeseed is obscure. Selenium (Se) is a vital micronutrient with a series of physiological and antioxidative properties.
View Article and Find Full Text PDFSelenium nanoparticles (SeNPs) have attracted considerable attention globally due to their significant potential for alleviating abiotic stresses in plants. Accordingly, further research has been conducted to develop nanoparticles using chemical ways. However, our knowledge about the potential benefit or phytotoxicity of bioSeNPs in rapeseed is still unclear.
View Article and Find Full Text PDFThe advent of the nanotechnology era offers a unique opportunity for sustainable agriculture, and the contribution of nanoparticles (NPs) to ameliorate abiotic stresses became the new area of interest for researchers due to their special physiochemical characteristics in the biological system. Salinity is a key devastating abiotic factor that hinders the development and yield of rapeseed. On the flip side, the impact of nanoparticles on plant hormones upon salt stress during seed imbibition and germination has been poorly understood.
View Article and Find Full Text PDFMeasuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress.
View Article and Find Full Text PDF