Publications by authors named "Ali M Harandi"

Background: Cutaneous leishmaniasis (CL), caused by () species, remains a neglected tropical disease in many developing countries. We and others have shown that different species can alter the gene expression profile of human host cells. Long non-coding RNAs (lncRNAs) have been found to play a role in the pathogenesis of leishmaniasis through dysregulation of transcriptome signatures.

View Article and Find Full Text PDF

Background: The JAK-STAT signaling pathway is a central cascade of signal transduction for the myriad of cytokines in which dysregulation has been implicated in progression of inflammatory and infectious diseases. However, the involvement of this pathway in human cutaneous leishmaniasis (CL) due to () tropica warrants further investigation.

Methods: This study sought to investigate differential gene expression of several cytokines and their associated genes in the lesions of -infected patients byquantitative Real-Time PCR.

View Article and Find Full Text PDF

Background: Unlike adults, children experienced stronger and longer vector replication in plasma and shedding in saliva following rVSVΔG-ZEBOV-GP vaccination. The resulting risks of immunosuppression or immune hyperactivation leading to increased Adverse Events (AEs) and altered antibody responses are concerns that have been addressed in the present manuscript.

Methods: Children aged 1-12 years living in Gabon received either rVSVΔG-ZEBOV-GP (ERVEBO®) vaccine or the varicella-zoster virus (VZV) vaccine (VZV).

View Article and Find Full Text PDF

Background: During the last decade Ebola virus has caused several outbreaks in Africa. The recombinant vesicular stomatitis virus-vectored Zaire Ebola (rVSVΔG-ZEBOV-GP) vaccine has proved safe and immunogenic but is reactogenic. We previously identified the first innate plasma signature response after vaccination in Geneva as composed of five monocyte-related biomarkers peaking at day 1 post-immunization that correlates with adverse events, biological outcomes (haematological changes and viremia) and antibody titers.

View Article and Find Full Text PDF

The vectored Ebola vaccine rVSVΔG-ZEBOV-GP elicits protection against Ebola Virus Disease (EVD). In a study of forty-eight healthy adult volunteers who received either the rVSVΔG-ZEBOV-GP vaccine or placebo, we profiled intracellular microRNAs (miRNAs) from whole blood cells (WB) and circulating miRNAs from serum-derived extracellular vesicles (EV) at baseline and longitudinally following vaccination. Further, we identified early miRNA signatures associated with ZEBOV-specific IgG antibody responses at baseline and up to one year post-vaccination, and pinpointed target mRNA transcripts and pathways correlated to miRNAs whose expression was altered after vaccination by using systems biology approaches.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a parasitic disease caused by the bite of infectious female sand flies with high socioeconomic burdens. There is currently no non-invasive, point-of-care, diagnostic method with high sensitivity and specificity available for CL. We herein report the development of a non-invasive tape disc (TD) sampling method combined with a loop-mediated isothermal amplification (LAMP) assay using primer sets targeting kinetoplast DNA (kDNA) of () with a colorimetric readout for species-specific diagnosis of CL.

View Article and Find Full Text PDF

Introduction: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events.

View Article and Find Full Text PDF

Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants.

View Article and Find Full Text PDF

A sero-epidemiology study was conducted in Dhaka, Bangladesh between January 2020 and February 2021 to assess the immune responses to ETEC infection in adults and children. (1) Background: Enterotoxigenic infection is a main cause of diarrheal disease in endemic countries. The characterization of the immune responses evoked by natural infection can guide vaccine development efforts.

View Article and Find Full Text PDF

Objectives: To report 5-year persistence and avidity of antibodies produced by the live-attenuated recombinant vesicular stomatitis virus (rVSV) expressing the Zaire Ebolavirus (ZEBOV) glycoprotein (GP), known as rVSV-ZEBOV (Ervebo®).

Methods: Healthy adults vaccinated with 300,000 or 10-50 million plaque-forming units of rVSV-ZEBOV in the WHO-coordinated trials of 2014-2015 were followed for up to 4 (Lambaréné, Gabon) and 5 (Geneva, Switzerland) years. We report seropositivity rates, geometric mean titres (GMTs), and population distribution of ZEBOV-GP ELISA IgG antibodies, neutralizing antibodies (pseudovirus and live-virus neutralization) and antibody avidity; the primary outcome was ZEBOV-GP ELISA IgG GMTs at 4 or 5 years compared with 1 year (Y1) after immunization.

View Article and Find Full Text PDF

Introduction: The COVID-19 pandemic illustrates the need for serology diagnostics with improved accuracy. While conventional serology based on recognition of entire proteins or subunits thereof has made significant contribution to the antibody assessment space, it often suffers from sub-optimal specificity. Epitope-based, high-precision, serology assays hold potential to capture the high specificity and diversity of the immune system, hence circumventing the cross-reactivity with closely related microbial antigens.

View Article and Find Full Text PDF

The development of vaccines based on outer membrane vesicles (OMV) that naturally bud off from bacteria is an evolving field in infectious diseases. However, the inherent inflammatory nature of OMV limits their use as human vaccines. This study employed an engineered vesicle technology to develop synthetic bacterial vesicles (SyBV) that activate the immune system without the severe immunotoxicity of OMV.

View Article and Find Full Text PDF

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common upper respiratory tract complication where the pathogenesis is largely unknown. Herein, we investigated the transcriptome profile in nasal mucosa biopsies of CRSwNP patients and healthy individuals. We further integrated the transcriptomics data with genes located in chromosomal regions containing genome-wide significant gene variants for COVID-19.

View Article and Find Full Text PDF

Introduction: C-type lectin receptor (CLR) agonists emerged as superior inducers of primary B cell responses in early life compared with Toll-like receptor (TLR) agonists, while both types of adjuvants are potent in adults.

Methods: Here, we explored the mechanisms accounting for the differences in neonatal adjuvanticity between a CLR-based (CAF01) and a TLR4-based (GLA-SE) adjuvant administered with influenza hemagglutinin (HA) in neonatal mice, by using transcriptomics and systems biology analyses.

Results: On day 7 after immunization, HA/CAF01 increased IL6 and IL21 levels in the draining lymph nodes, while HA/GLA-SE increased IL10.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a neglected tropical disease with severe morbidity and socioeconomic sequelae. A better understanding of underlying immune mechanisms that lead to different clinical outcomes of CL could inform the rational design of intervention measures. While transcriptomic analyses of CL lesions were recently reported by us and others, there is a dearth of information on the expression of immune-related genes in the blood of CL patients.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes mild symptoms in the majority of infected individuals, yet in some cases it leads to a life-threatening condition. Determination of early predictive biomarkers enabling risk stratification for coronavirus disease 2019 (COVID-19) patients can inform treatment and intervention strategies. Herein, we analyzed whole blood samples obtained from individuals infected with SARS-CoV-2, varying from mild to critical symptoms, approximately one week after symptom onset.

View Article and Find Full Text PDF

B cell responses are critical for antiviral immunity. However, a comprehensive picture of antigen-specific B cell differentiation, clonal proliferation, and dynamics in different organs after infection is lacking. Here, by combining single-cell RNA and B cell receptor (BCR) sequencing of antigen-specific cells in lymph nodes, spleen, and lungs after influenza infection in mice, we identify several germinal center (GC) B cell subpopulations and organ-specific differences that persist over the course of the response.

View Article and Find Full Text PDF

The severity of disease of Covid-19 is highly variable, ranging from asymptomatic to critical respiratory disease and death. Potential cross-reactive immune responses between SARS-CoV-2 and endemic coronavirus (eCoV) may hypothetically contribute to this variability. We herein studied if eCoV nucleoprotein (N)-specific antibodies in the sera of patients with mild or severe Covid-19 are associated with Covid-19 severity.

View Article and Find Full Text PDF

Background: Overall, there are over 30 different sexually transmitted infections with Neisseria gonorrhoeae being the third most frequent with a reported 78 million cases per year. Gonococcal infection causes genital inflammation, which can be a risk factor for others sexually transmitted infections, particularly human immunodeficiency virus. Gonorrhea is a treatable disease, but recently an increase in antibiotic resistance has been of concern.

View Article and Find Full Text PDF

Anthroponotic cutaneous leishmaniasis (CL) caused by Leishmania tropica (L. tropica) represents a public health challenge in several resource poor settings. We herein employed a systems analysis approach to study molecular signatures of CL caused by L.

View Article and Find Full Text PDF

Background: Cutaneous leishmaniasis (CL) is an infection caused by Leishmania (L.) protozoa transmitted through the bite of infected sand fly. Previously, invasive sampling of blood and skin along with low throughput methods were used for determination of inflammatory response in CL patients.

View Article and Find Full Text PDF

Alum has been widely used as an adjuvant for human vaccines; however, the impact of Alum on host metabolism remains largely unknown. Herein, we applied mass spectrometry (MS) (liquid chromatography-MS)-based metabolic and lipid profiling to monitor the effects of the Alum adjuvant on mouse serum at 6, 24, 72, and 168 h post-vaccination. We propose a new strategy termed subclass identification and annotation for metabolomics for class-wise identification of untargeted metabolomics data generated from high-resolution MS.

View Article and Find Full Text PDF

Immaturity of the immune system contributes to poor vaccine responses in early life. Germinal center (GC) activation is limited due to poorly developed follicular dendritic cells (FDC), causing generation of few antibody-secreting cells (ASCs) with limited survival and transient antibody responses. Herein, we compared the potential of five adjuvants, namely LT-K63, mmCT, MF59, IC31, and alum to overcome limitations of the neonatal immune system and to enhance and prolong responses of neonatal mice to a pneumococcal conjugate vaccine Pnc1-TT.

View Article and Find Full Text PDF