In this paper, we propose and theoretically investigate a novel multimode refractive index (MMRI) plasmonic optical sensor for detecting various brain cancer cells, leveraging the unique capabilities of split ring resonators (SRRs). The sensor, simulated using the finite-difference time-domain (FDTD) method, exhibits dual resonance modes in its reflection spectrum within the 1500 nm to 3500 nm wavelength range, marking a significant advancement in multimode plasmonic biosensing. Through detailed parametric analysis, we optimize critical dimensional parameters to achieve superior performance.
View Article and Find Full Text PDFIn recent years, following the outbreak of the COVID-19 pandemic, there has been a significant increase in cases of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and related deaths worldwide. Despite the pandemic nearing its end due to the introduction of mass-produced vaccines against SARS-CoV-2, early detection and diagnosis of the virus remain crucial in preventing disease progression. This article explores the rapid identification of SARS-CoV-2 by implementing a multimode plasmonic refractive index (MMRI) optical sensor, developed based on the split ring resonator (SRR) design.
View Article and Find Full Text PDFThe recent viral infection disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global public health crisis. Iran, as one of the countries that reported over five million infected cases by September 2021, has been concerned with the urgent development of effective vaccines against SARS-CoV-2. In this paper, we report the results of a study on potency and safety of an inactivated SARS-CoV-2 vaccine candidate (FAKHRAVAC) in a preclinical study so as to confirm its potential for further clinical evaluation.
View Article and Find Full Text PDF